# Conflicts:
#	src/hooks/useMode.js
This commit is contained in:
hyojun.choi 2024-07-23 18:14:44 +09:00
commit 38881ead6a
4 changed files with 340 additions and 11 deletions

View File

@ -40,6 +40,7 @@ export default function Roof2() {
zoomOut,
zoom,
togglePolygonLine,
handleOuterlinesTest,
handleOuterlinesTest2,
applyTemplateB,
makeRoofPatternPolygon,

View File

@ -1,4 +1,5 @@
import { fabric } from 'fabric'
import { getDirection, getDirectionByPoint } from '@/util/canvas-util'
export class QLine extends fabric.Group {
line
@ -47,7 +48,7 @@ export class QLine extends fabric.Group {
this.y2 = y2
this.line = line
this.fontSize = option.fontSize
this.direction = option.direction
this.direction = option.direction ?? getDirectionByPoint({ x: x1, y: y1 }, { x: x2, y: y2 })
this.parent = option.parent
this.idx = option.idx

View File

@ -201,6 +201,22 @@ export function useMode() {
break
}
case 'Enter': {
const result = prompt('입력하세요 (a(A패턴),b(B패턴),t(지붕))')
switch (result) {
case 'a':
applyTemplateA()
break
case 'b':
applyTemplateB()
break
case 't':
templateMode()
break
}
}
}
}
@ -860,8 +876,17 @@ export function useMode() {
/**
* 지붕 외곽선 생성
*/
const handleOuterlinesTest = (polygon, offset = 71) => {
var offsetPoints = []
const handleOuterlinesTest = (offsetInputX, offsetInputY = 0) => {
const polygon = drawWallPolygon()
let offsetPoints = []
const originalMax = 71
const transformedMax = 100
offsetInputY = offsetInputY !== 0 ? offsetInputY : offsetInputX
const offsetX = (offsetInputX / transformedMax) * originalMax * 2
const offsetY = (offsetInputY / transformedMax) * originalMax * 2
const sortedIndex = getStartIndex(polygon.lines)
let tmpArraySorted = rearrangeArray(polygon.lines, sortedIndex)
@ -914,17 +939,14 @@ export function useMode() {
// 오프셋 적용
var offsetPoint = {
x1: current.x + unitNormal.x * offset,
y1: current.y + unitNormal.y * offset,
x1: current.x + unitNormal.x * offsetX,
y1: current.y + unitNormal.y * offsetY,
}
offsetPoints.push(offsetPoint)
}
const roof = makePolygon(offsetPoints)
setRoof(roof)
return roof
makePolygon(offsetPoints)
}
/**
@ -1044,6 +1066,8 @@ export function useMode() {
} else if (polygon.lines.length === 6) {
//6각형
handleOuterLineTemplateA6Points(polygon)
} else if (polygon.lines.length === 8) {
handleOuterLineTemplateA8Points(polygon)
}
}
@ -1860,6 +1884,214 @@ export function useMode() {
canvas.renderAll()
}
const handleOuterLineTemplateA8Points = (polygon, offsetInputX = 50, offsetInputY = 20) => {
let offsetPoints = []
const originalMax = 71
const transformedMax = 100
let lines = [] //내각라인
let outLines = [] //아웃라인
let halfLength = 0 //선길이
const dashedCenterLineOpt = {
stroke: 'black',
strokeWidth: 4,
property: 'centerLine',
strokeDashArray: [5, 5],
fontSize: 14,
}
const centerLineOpt = {
stroke: 'blue',
strokeWidth: 5,
property: 'bigHoriCenter',
fontSize: 14,
}
// 폴리곤의 각 변을 선으로 생성
for (let i = 0; i < polygon.points.length; i++) {
const start = polygon.points[i]
const end = polygon.points[(i + 1) % polygon.points.length] // 다음 점, 마지막 점의 경우 첫 점으로
const color = i % 2 === 0 ? '#A0D468' : 'skyblue'
const line = new QLine([start.x, start.y, end.x, end.y], {
stroke: color,
strokeWidth: 2,
property: 'normal',
fontSize: 14,
})
// 선을 배열에 추가
lines.push(line)
canvas.add(line)
}
offsetInputY = offsetInputY !== 0 ? offsetInputY : offsetInputX
const sortedIndex = getStartIndex(polygon.lines)
let tmpArraySorted = rearrangeArray(polygon.lines, sortedIndex)
if (tmpArraySorted[0].direction === 'right') {
//시계방향
tmpArraySorted = tmpArraySorted.reverse() //그럼 배열을 거꾸로 만들어서 무조건 반시계방향으로 배열 보정
}
setSortedArray(tmpArraySorted) //recoil에 넣음
const points = tmpArraySorted.map((line) => ({
x: line.x1,
y: line.y1,
}))
// 외적을 계산하는 함수
function crossProduct(p1, p2, p3) {
const dx1 = p2.x - p1.x
const dy1 = p2.y - p1.y
const dx2 = p3.x - p2.x
const dy2 = p3.y - p2.y
return dx1 * dy2 - dy1 * dx2
}
let concaveIndices = [] //볼록한 부분 인덱스 배열
let concavePointIndices = [] //오목한 부분 인덱스 배열
// 오목한 부분 찾기
function findConcavePointIndices(points) {
let concaveIndices = []
for (let i = 0; i < points.length; i++) {
const p1 = points[i]
const p2 = points[(i + 1) % points.length]
const p3 = points[(i + 2) % points.length]
const cross = crossProduct(p1, p2, p3)
if (cross < 0) {
concaveIndices.push((i + 1) % points.length)
} else {
concavePointIndices.push((i + 1) % points.length)
}
}
return concaveIndices
}
// 오목한 부분 인덱스 찾기
concaveIndices = findConcavePointIndices(points) //오목한 부분을 제외한 인덱스
const concavePoints = concaveIndices.map((index) => points[index])
for (var i = 0; i < points.length; i++) {
var prev = points[(i - 1 + points.length) % points.length]
var current = points[i]
var next = points[(i + 1) % points.length]
// 두 벡터 계산 (prev -> current, current -> next)
var vector1 = { x: current.x - prev.x, y: current.y - prev.y }
var vector2 = { x: next.x - current.x, y: next.y - current.y }
// 벡터의 길이 계산
var length1 = Math.sqrt(vector1.x * vector1.x + vector1.y * vector1.y)
var length2 = Math.sqrt(vector2.x * vector2.x + vector2.y * vector2.y)
// 벡터를 단위 벡터로 정규화
var unitVector1 = { x: vector1.x / length1, y: vector1.y / length1 }
var unitVector2 = { x: vector2.x / length2, y: vector2.y / length2 }
// 법선 벡터 계산 (왼쪽 방향)
var normal1 = { x: -unitVector1.y, y: unitVector1.x }
var normal2 = { x: -unitVector2.y, y: unitVector2.x }
// 법선 벡터 평균 계산
var averageNormal = {
x: (normal1.x + normal2.x) / 2,
y: (normal1.y + normal2.y) / 2,
}
// 평균 법선 벡터를 단위 벡터로 정규화
var lengthNormal = Math.sqrt(averageNormal.x * averageNormal.x + averageNormal.y * averageNormal.y)
var unitNormal = {
x: averageNormal.x / lengthNormal,
y: averageNormal.y / lengthNormal,
}
let offsetX
let offsetY
if (concavePointIndices[0] === i || concavePointIndices[1] === i) {
// 인덱스가 배열이랑 같으면
if ((concavePointIndices[0] === 4 && concavePointIndices[1] === 5) || (concavePointIndices[0] === 2 && concavePointIndices[1] === 3)) {
offsetX = 1
offsetY = (offsetInputY / transformedMax) * originalMax * 2
} else {
offsetX = (offsetInputX / transformedMax) * originalMax * 2
offsetY = 1
}
} else {
offsetX = (offsetInputX / transformedMax) * originalMax * 2
offsetY = (offsetInputY / transformedMax) * originalMax * 2
}
// 오프셋 적용
var offsetPoint = {
x1: current.x + unitNormal.x * offsetX,
y1: current.y + unitNormal.y * offsetY,
}
offsetPoints.push(offsetPoint)
}
const outlinePolygon = makePolygon(offsetPoints)
// 아웃라인 폴리곤의 각 변을 선으로 생성
for (let i = 0; i < outlinePolygon.points.length; i++) {
const start = outlinePolygon.points[i]
const end = outlinePolygon.points[(i + 1) % outlinePolygon.points.length] // 다음 점, 마지막 점의 경우 첫 점으로
const line = new QLine([start.x, start.y, end.x, end.y], {
stroke: 'blue',
strokeWidth: 2,
property: 'normal',
fontSize: 14,
})
// 선을 배열에 추가
outLines.push(line)
canvas.add(line)
}
canvas?.remove(outlinePolygon) //임시 폴리곤을 삭제
canvas?.remove(outLines[concavePointIndices[0]]) //가운데 제외되는 선을 지운다
//라인들을 좌측에서 -> 우측으로 그리는거처럼 데이터 보정
outLines.forEach((outline, index) => {
let minX, minY, maxX, maxY
if (outline.x2 < outline.x1 || outline.y2 < outline.y1) {
outLines[index].x1 = outline.x2
outLines[index].y1 = outline.y2
outLines[index].x2 = outline.x1
outLines[index].y2 = outline.y1
outLines[index].line.x1 = minX
outLines[index].line.y1 = minY
outLines[index].line.x2 = maxX
outLines[index].line.y2 = maxY
}
})
// for (let i = 0; i < outLines.length; i++) {
// if (!i % 2 === 0) {
// if (i === concavePointIndices[0] - 1 || i === concavePointIndices[1] + 1) {
// //배열 3번이나 5번일때
// } else {
// }
// }
// }
let parallelLines = concavePointIndices[0] + 4 //들어간선에 무조건 평행하는 선 찾기
if (parallelLines > outLines.length) {
parallelLines = outLines[concavePointIndices[0] + 4 - outLines.length - 1]
}
canvas.renderAll()
}
/**
* 템플릿 B 적용
*/
@ -2356,6 +2588,7 @@ export function useMode() {
zoomOut,
zoom,
togglePolygonLine,
handleOuterlinesTest,
handleOuterlinesTest2,
makeRoofPatternPolygon,
}

View File

@ -450,7 +450,11 @@ export const sortedPoints = (points) => {
// 짝수번째는 y값이 같은 점을 찾는다.
for (let i = 0; i < copyPoints.length; i++) {
// y값이 같은 point가 많은 경우 그 중 x값이 가장 큰걸 찾는다.
const temp = copyPoints.filter((point) => point.y === currentPoint.y)
let temp = copyPoints.filter((point) => point.y === currentPoint.y)
if (temp.length === 0) {
// temp가 비어있을 경우 copyPoints에서 가장 가까운 점을 찾는다.
temp = Array.of(findClosestPointByY(currentPoint, copyPoints))
}
// temp중 x값이 가장 가까운 값
const min = temp.reduce((prev, current) => (Math.abs(current.x - currentPoint.x) <= Math.abs(prev.x - currentPoint.x) ? current : prev))
@ -465,7 +469,12 @@ export const sortedPoints = (points) => {
// 홀수번째는 x값이 같은 점을 찾는다.
for (let i = 0; i < copyPoints.length; i++) {
// x값이 같은 point가 많은 경우 그 중 y값이 가장 큰걸 찾는다.
const temp = copyPoints.filter((point) => point.x === currentPoint.x)
let temp = copyPoints.filter((point) => point.x === currentPoint.x)
if (temp.length === 0) {
// temp가 비어있을 경우 copyPoints에서 가장 가까운 점을 찾는다.
temp = Array.of(findClosestPointByX(currentPoint, copyPoints))
}
// temp중 y값이 가장 가까운 값
const min = temp.reduce((prev, current) => (Math.abs(current.y - currentPoint.y) <= Math.abs(prev.y - currentPoint.y) ? current : prev))
@ -517,6 +526,81 @@ export function findClosestLineToPoint(point, lines) {
return closestLine
}
/**
* x값이 가장 가까운
* @param targetPoint
* @param points
* @returns {*|null}
*/
function findClosestPointByX(targetPoint, points) {
if (points.length === 0) {
return null // Return null if the points array is empty
}
let closestPoint = points[0]
let smallestDistance = Math.abs(targetPoint.x - points[0].x)
for (let i = 1; i < points.length; i++) {
const currentDistance = Math.abs(targetPoint.x - points[i].x)
if (currentDistance < smallestDistance) {
smallestDistance = currentDistance
closestPoint = points[i]
}
}
return closestPoint
}
/**
* y값이 가장 가까운
* @param targetPoint
* @param points
* @returns {*|null}
*/
function findClosestPointByY(targetPoint, points) {
if (points.length === 0) {
return null // Return null if the points array is empty
}
let closestPoint = points[0]
let smallestDistance = Math.abs(targetPoint.y - points[0].y)
for (let i = 1; i < points.length; i++) {
const currentDistance = Math.abs(targetPoint.y - points[i].y)
if (currentDistance < smallestDistance) {
smallestDistance = currentDistance
closestPoint = points[i]
}
}
return closestPoint
}
/**
* 주어진 점에서 points 배열 가장 가까운 점을 찾는 함수입니다.
* @param {Object} targetPoint - { x: number, y: number } 형태의 대상 객체
* @param {Array} points - { x: number, y: number } 형태의 객체들의 배열
* @returns {Object} targetPoint에 가장 가까운 객체
*/
export function findClosestPoint(targetPoint, points) {
if (points.length === 0) {
return null // points 배열이 비어있으면 null 반환
}
let closestPoint = points[0]
let smallestDistance = calculateDistancePoint(targetPoint, closestPoint)
for (let i = 1; i < points.length; i++) {
const currentDistance = calculateDistancePoint(targetPoint, points[i])
if (currentDistance < smallestDistance) {
smallestDistance = currentDistance
closestPoint = points[i]
}
}
return closestPoint
}
/**
* 점과 직선사이의 최단 거리
* @param point
@ -535,3 +619,13 @@ export function calculateDistance(point, line) {
const denominator = Math.sqrt(Math.pow(y2 - y1, 2) + Math.pow(x2 - x1, 2))
return numerator / denominator
}
/**
* 사이의 거리를 계산하는 함수입니다.
* @param {Object} point1 - 번째 { x: number, y: number }
* @param {Object} point2 - 번째 { x: number, y: number }
* @returns {number} 사이의 거리
*/
function calculateDistancePoint(point1, point2) {
return Math.sqrt(Math.pow(point2.x - point1.x, 2) + Math.pow(point2.y - point1.y, 2))
}