
Next.js app router는 Server component를 적용할 수 있게 구현이 되어있다
Server components를 통해 전체 어플리케이션을 클라이언트에서 렌더링 하는 것이 아닌 의도에 따라 어디에서 컴포넌트를 렌더링할지
정할 수 있다.

예를 들어 위 그림에서 Navbar, Sidebar, Main 컴포넌트는 interactive 한 부분이 없는 정적인 컴포넌트이기 때문에 서버에서 Server
component로 렌더링 할 수 있다. 나머지 interactive한 UI는 Client component로 렌더링하게 된다. 이를 Next.js에선 Server-
first 접근법이라 한다.

App router에서는 기본적으로 모든 컴포넌트가 Server component 디폴트이다. Client component로 사용하고 싶다면 use
client선언문을 통해 변경할 수 있다.

Client component는 어플리케이션에 client 측 interactivity를 추가할 수 있게한다. Next.js에선 이 컴포넌트들은 먼저 서버에서
pre-render 된 후 클라이언트에서 hydrate(JS가 실행되면서 interactive하게 ...) 된다.
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Next.js 에서는 기본적으로 먼저 Server component를 사용하고 필요할때 Client component를 사용하라고 가이드 하고 있다.

'use client'; // 요런식으로 선언해주면 여기서부턴 client 컴포넌트임

import { useState } from 'react';

export default function Counter() {
  const [count, setCount] = useState(0);

  return (
    <div>
      <p>You clicked {count} times</p>
      <button onClick={() => setCount(count + 1)}>Click me</button>
    </div>
  );
}
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Server component
데이터 fetching
백엔드 자원에 접근
민감한 정보를 서버에 유지
large dependencies 를 서버에서 유지 / 클라이언트 js 번들 사이즈 감소

Client component
interactivity, event listener (onClick등) 가 필요할 때
state 및 라이프사이클이 필요할 때
browser-only API 사용
custom hook depend on state

https://nextjs.org/docs

