
Next.js app router는 Server component를 적용할 수 있게 구현이 되어있다
Server components를 통해 전체 어플리케이션을 클라이언트에서 렌더링 하는 것이 아닌 의도에 따라 어디에서 컴포넌트를 렌더링할지
정할 수 있다.

예를 들어 위 그림에서 Navbar, Sidebar, Main 컴포넌트는 interactive 한 부분이 없는 정적인 컴포넌트이기 때문에 서버에서 Server
component로 렌더링 할 수 있다. 나머지 interactive한 UI는 Client component로 렌더링하게 된다. 이를 Next.js에선 Server-
first 접근법이라 한다.

App router에서는 기본적으로 모든 컴포넌트가 Server component 디폴트이다. Client component로 사용하고 싶다면 use
client선언문을 통해 변경할 수 있다.

Client component는 어플리케이션에 client 측 interactivity를 추가할 수 있게한다. Next.js에선 이 컴포넌트들은 먼저 서버에서
pre-render 된 후 클라이언트에서 hydrate(JS가 실행되면서 interactive하게 ...) 된다.

Nextjs 14 컴포넌트에 대해서...
table of contents

Server components
Client components
그럼 언제 써야 하나?

Server components

Client components

Next.js 에서는 기본적으로 먼저 Server component를 사용하고 필요할때 Client component를 사용하라고 가이드 하고 있다.

'use client'; // 요런식으로 선언해주면 여기서부턴 client 컴포넌트임

import { useState } from 'react';

export default function Counter() {
 const [count, setCount] = useState(0);

 return (
 <div>
 <p>You clicked {count} times</p>
 <button onClick={() => setCount(count + 1)}>Click me</button>
 </div>
);
}

JS

그럼 언제 써야 하나?

Next.js 14

Server component
데이터 fetching
백엔드 자원에 접근
민감한 정보를 서버에 유지
large dependencies 를 서버에서 유지 / 클라이언트 js 번들 사이즈 감소

Client component
interactivity, event listener (onClick등) 가 필요할 때
state 및 라이프사이클이 필요할 때
browser-only API 사용
custom hook depend on state

https://nextjs.org/docs

