qcast-front/src/util/qpolygon-utils.js

8026 lines
338 KiB
JavaScript

import { fabric } from 'fabric'
import { QLine } from '@/components/fabric/QLine'
import { getAdjacent, getDegreeByChon, isPointOnLine, isPointOnLineNew } from '@/util/canvas-util'
import { QPolygon } from '@/components/fabric/QPolygon'
import * as turf from '@turf/turf'
import { LINE_TYPE, POLYGON_TYPE } from '@/common/common'
import Big from 'big.js'
const TWO_PI = Math.PI * 2
export const defineQPolygon = () => {
fabric.QPolygon.fromObject = function (object, callback) {
fabric.Object._fromObject('QPolygon', object, callback, 'points')
}
}
/**
* point1에서 point2를 잇는 방향의 각도를 구한다.
* @param point1
* @param point2
* @returns {number}
*/
export const calculateAngle = (point1, point2) => {
const deltaX = Big(point2.x ?? 0)
.minus(point1.x ?? 0)
.toNumber()
const deltaY = Big(point2.y ?? 0)
.minus(point1.y ?? 0)
.toNumber()
const angleInRadians = Math.atan2(deltaY, deltaX)
return Big(angleInRadians * (180 / Math.PI))
.round()
.toNumber()
}
function inwardEdgeNormal(vertex1, vertex2) {
// Assuming that polygon vertices are in clockwise order
const dx = vertex2.x - vertex1.x
const dy = vertex2.y - vertex1.y
const edgeLength = Math.sqrt(dx * dx + dy * dy)
return {
x: -dy / edgeLength,
y: dx / edgeLength,
}
}
function outwardEdgeNormal(vertex1, vertex2) {
const n = inwardEdgeNormal(vertex1, vertex2)
return {
x: -n.x,
y: -n.y,
}
}
function createPolygon(vertices) {
const edges = []
let minX = vertices.length > 0 ? vertices[0].x : undefined
let minY = vertices.length > 0 ? vertices[0].y : undefined
let maxX = minX
let maxY = minY
for (let i = 0; i < vertices.length; i++) {
const vertex1 = vertices[i]
const vertex2 = vertices[(i + 1) % vertices.length]
const outwardNormal = outwardEdgeNormal(vertex1, vertex2)
const inwardNormal = inwardEdgeNormal(vertex1, vertex2)
const edge = {
vertex1,
vertex2,
index: i,
outwardNormal,
inwardNormal,
}
edges.push(edge)
const x = vertices[i].x
const y = vertices[i].y
minX = Math.min(x, minX)
minY = Math.min(y, minY)
maxX = Math.max(x, maxX)
maxY = Math.max(y, maxY)
}
return {
vertices,
edges,
minX,
minY,
maxX,
maxY,
}
}
/**
* edgeA와 edgeB가 마주치는 포인트의 좌표를 반환한다.
* @param edgeA
* @param edgeB
* @returns {{x: *, y: *, isIntersectionOutside: boolean}|null}
*/
function edgesIntersection(edgeA, edgeB) {
const den =
(edgeB.vertex2.y - edgeB.vertex1.y) * (edgeA.vertex2.x - edgeA.vertex1.x) -
(edgeB.vertex2.x - edgeB.vertex1.x) * (edgeA.vertex2.y - edgeA.vertex1.y)
if (den === 0) {
return null // 선들이 평행하거나 일치합니다
}
const ua =
((edgeB.vertex2.x - edgeB.vertex1.x) * (edgeA.vertex1.y - edgeB.vertex1.y) -
(edgeB.vertex2.y - edgeB.vertex1.y) * (edgeA.vertex1.x - edgeB.vertex1.x)) /
den
const ub =
((edgeA.vertex2.x - edgeA.vertex1.x) * (edgeA.vertex1.y - edgeB.vertex1.y) -
(edgeA.vertex2.y - edgeA.vertex1.y) * (edgeA.vertex1.x - edgeB.vertex1.x)) /
den
// 교차점이 두 선분의 범위 내에 있는지 확인
const isIntersectionOutside = ua < 0 || ub < 0 || ua > 1 || ub > 1
return {
x: edgeA.vertex1.x + ua * (edgeA.vertex2.x - edgeA.vertex1.x),
y: edgeA.vertex1.y + ua * (edgeA.vertex2.y - edgeA.vertex1.y),
isIntersectionOutside,
}
}
function appendArc(arcSegments, vertices, center, radius, startVertex, endVertex, isPaddingBoundary) {
let startAngle = Math.atan2(startVertex.y - center.y, startVertex.x - center.x)
let endAngle = Math.atan2(endVertex.y - center.y, endVertex.x - center.x)
if (startAngle < 0) {
startAngle += TWO_PI
}
if (endAngle < 0) {
endAngle += TWO_PI
}
const angle = startAngle > endAngle ? startAngle - endAngle : startAngle + TWO_PI - endAngle
const angleStep = (isPaddingBoundary ? -angle : TWO_PI - angle) / arcSegments
vertices.push(startVertex)
for (let i = 1; i < arcSegments; ++i) {
const angle = startAngle + angleStep * i
const vertex = {
x: center.x + Math.cos(angle) * radius,
y: center.y + Math.sin(angle) * radius,
}
vertices.push(vertex)
}
vertices.push(endVertex)
}
function createOffsetEdge(edge, dx, dy) {
return {
vertex1: {
x: edge.vertex1.x + dx,
y: edge.vertex1.y + dy,
},
vertex2: {
x: edge.vertex2.x + dx,
y: edge.vertex2.y + dy,
},
}
}
function createMarginPolygon(polygon, offset, arcSegments = 0) {
const offsetEdges = []
for (let i = 0; i < polygon.edges.length; i++) {
const edge = polygon.edges[i]
const dx = edge.outwardNormal.x * offset
const dy = edge.outwardNormal.y * offset
offsetEdges.push(createOffsetEdge(edge, dx, dy))
}
const vertices = []
for (let i = 0; i < offsetEdges.length; i++) {
const thisEdge = offsetEdges[i]
const prevEdge = offsetEdges[(i + offsetEdges.length - 1) % offsetEdges.length]
const vertex = edgesIntersection(prevEdge, thisEdge)
if (vertex && (!vertex.isIntersectionOutside || arcSegments < 1)) {
vertices.push({
x: vertex.x,
y: vertex.y,
})
} else {
const arcCenter = polygon.edges[i].vertex1
appendArc(arcSegments, vertices, arcCenter, offset, prevEdge.vertex2, thisEdge.vertex1, false)
}
}
const marginPolygon = createPolygon(vertices)
marginPolygon.offsetEdges = offsetEdges
return marginPolygon
}
function createPaddingPolygon(polygon, offset, arcSegments = 0) {
const offsetEdges = []
for (let i = 0; i < polygon.edges.length; i++) {
const edge = polygon.edges[i]
const dx = edge.inwardNormal.x * offset
const dy = edge.inwardNormal.y * offset
offsetEdges.push(createOffsetEdge(edge, dx, dy))
}
const vertices = []
for (let i = 0; i < offsetEdges.length; i++) {
const thisEdge = offsetEdges[i]
const prevEdge = offsetEdges[(i + offsetEdges.length - 1) % offsetEdges.length]
const vertex = edgesIntersection(prevEdge, thisEdge)
if (vertex && (!vertex.isIntersectionOutside || arcSegments < 1)) {
vertices.push({
x: vertex.x,
y: vertex.y,
})
} else {
const arcCenter = polygon.edges[i].vertex1
appendArc(arcSegments, vertices, arcCenter, offset, prevEdge.vertex2, thisEdge.vertex1, true)
}
}
const paddingPolygon = createPolygon(vertices)
paddingPolygon.offsetEdges = offsetEdges
return paddingPolygon
}
export default function offsetPolygon(vertices, offset) {
const polygon = createPolygon(vertices)
const arcSegments = 0
const originPolygon = new QPolygon(vertices, { fontSize: 0 })
originPolygon.setViewLengthText(false)
if (offset > 0) {
let result = createMarginPolygon(polygon, offset, arcSegments).vertices
const allPointsOutside = result.every((point) => !originPolygon.inPolygon(point))
if (allPointsOutside) {
return createMarginPolygon(polygon, offset, arcSegments).vertices
} else {
return createPaddingPolygon(polygon, offset, arcSegments).vertices
}
} else {
let result = createPaddingPolygon(polygon, offset, arcSegments).vertices
const allPointsInside = result.every((point) => originPolygon.inPolygon(point))
if (allPointsInside) {
return createPaddingPolygon(polygon, offset, arcSegments).vertices
} else {
return createMarginPolygon(polygon, offset, arcSegments).vertices
}
}
}
function normalizePoint(point) {
return {
x: Math.round(point.x),
y: Math.round(point.y),
}
}
function arePolygonsEqual(polygon1, polygon2) {
if (polygon1.length !== polygon2.length) return false
const normalizedPolygon1 = polygon1.map(normalizePoint).sort((a, b) => a.x - b.x || a.y - b.y)
const normalizedPolygon2 = polygon2.map(normalizePoint).sort((a, b) => a.x - b.x || a.y - b.y)
return normalizedPolygon1.every((point, index) => arePointsEqual(point, normalizedPolygon2[index]))
}
export function removeDuplicatePolygons(polygons) {
let uniquePolygons = []
// x가 전부 같거나, y가 전부 같은 경우 제거
polygons.forEach((polygon) => {
const isDuplicate = uniquePolygons.some((uniquePolygon) => arePolygonsEqual(polygon, uniquePolygon))
if (!isDuplicate) {
uniquePolygons.push(polygon)
}
})
uniquePolygons = uniquePolygons.filter((polygon) => {
return isValidPoints(polygon)
})
return uniquePolygons
}
// 같은 직선상에 있는지 확인 같은 직선이라면 polygon을 생성할 수 없으므로 false
const isValidPoints = (points) => {
function isColinear(p1, p2, p3) {
return (p2.x - p1.x) * (p3.y - p1.y) === (p3.x - p1.x) * (p2.y - p1.y)
}
function segmentsOverlap(a1, a2, b1, b2) {
// 같은 직선 상에 있는가?
if (!isColinear(a1, a2, b1) || !isColinear(a1, a2, b2)) {
return false
}
const isHorizontal = a1.y === a2.y
if (isHorizontal) {
const aMin = Math.min(a1.x, a2.x),
aMax = Math.max(a1.x, a2.x)
const bMin = Math.min(b1.x, b2.x),
bMax = Math.max(b1.x, b2.x)
return Math.max(aMin, bMin) < Math.min(aMax, bMax)
} else {
const aMin = Math.min(a1.y, a2.y),
aMax = Math.max(a1.y, a2.y)
const bMin = Math.min(b1.y, b2.y),
bMax = Math.max(b1.y, b2.y)
return Math.max(aMin, bMin) < Math.min(aMax, bMax)
}
}
for (let i = 0; i < points.length - 2; i++) {
const a1 = points[i]
const a2 = points[i + 1]
const b1 = points[i + 1] // 연속되는 점
const b2 = points[i + 2]
if (segmentsOverlap(a1, a2, b1, b2)) {
return false
}
}
return true
}
export const isSamePoint = (a, b) => {
if (!a || !b) {
return false
}
return Math.abs(Math.round(a.x) - Math.round(b.x)) <= 2 && Math.abs(Math.round(a.y) - Math.round(b.y)) <= 2
}
/**
* 한쪽흐름 지붕
* @param roofId
* @param canvas
* @param textMode
*/
export const drawShedRoof = (roofId, canvas, textMode) => {
const roof = canvas?.getObjects().find((object) => object.id === roofId)
const hasNonParallelLines = roof.lines.filter((line) => Math.abs(line.x1 - line.x2) > 1 && Math.abs(line.y1 - line.y2) > 1)
if (hasNonParallelLines.length > 0) {
// alert('대각선이 존재합니다.')
return
}
const sheds = roof.lines.filter((line) => line.attributes?.type === LINE_TYPE.WALLLINE.SHED)
const gables = roof.lines.filter((line) => line.attributes?.type === LINE_TYPE.WALLLINE.GABLE)
const eaves = roof.lines.filter((line) => line.attributes?.type === LINE_TYPE.WALLLINE.EAVES)
const shedDegree = getDegreeByChon(sheds[0].attributes.pitch)
gables.forEach(
(gable) =>
(gable.attributes.actualSize = calcLineActualSize(
{
x1: gable.x1,
y1: gable.y1,
x2: gable.x2,
y2: gable.y2,
},
shedDegree,
)),
)
const pitchSizeLines = []
sheds.forEach((shed) => {
let points = []
let x1, y1, x2, y2
const signX = Math.sign(shed.x1 - shed.x2)
if (signX !== 0) {
points.push(shed.x1, shed.x2)
y1 = shed.y1
} else {
points.push(shed.y1, shed.y2)
x1 = shed.x1
}
eaves.forEach((eave) => {
if (signX !== 0) {
points.push(eave.x1, eave.x2)
points.sort((a, b) => a - b)
x1 = (points[1] + points[2]) / 2
x2 = (points[1] + points[2]) / 2
y2 = eave.y1
} else {
points.push(eave.y1, eave.y2)
points.sort((a, b) => a - b)
y1 = (points[1] + points[2]) / 2
y2 = (points[1] + points[2]) / 2
x2 = eave.x1
}
points.sort((a, b) => a - b)
const actualSize = calcLineActualSize({ x1, y1, x2, y2 }, shedDegree)
const line = new QLine([x1, y1, x2, y2], {
parentId: roof.id,
stroke: '#000000',
strokeWidth: 2,
strokeDashArray: [5, 5],
selectable: false,
fontSize: roof.fontSize,
textMode: textMode,
attributes: {
roofId: roof.id,
type: 'pitchSizeLine',
planeSize: actualSize,
actualSize: actualSize,
},
})
pitchSizeLines.push(line)
})
})
const maxLine = pitchSizeLines.reduce((prev, current) => (prev.length > current.length ? prev : current), pitchSizeLines[0])
canvas.add(maxLine)
canvas.renderAll()
}
/**
* 마루가 있는 지붕을 그린다.
* @param roofId
* @param canvas
* @param textMode
*/
export const drawRidgeRoof = (roofId, canvas, textMode) => {
let roof = canvas?.getObjects().find((object) => object.id === roofId)
const wall = canvas.getObjects().find((object) => object.name === POLYGON_TYPE.WALL && object.attributes.roofId === roofId)
const hasNonParallelLines = roof.lines.filter((line) => Big(line.x1).minus(Big(line.x2)).gt(1) && Big(line.y1).minus(Big(line.y2)).gt(1))
if (hasNonParallelLines.length > 0) {
return
}
const eavesType = [LINE_TYPE.WALLLINE.EAVES, LINE_TYPE.WALLLINE.HIPANDGABLE]
const gableType = [LINE_TYPE.WALLLINE.GABLE, LINE_TYPE.WALLLINE.JERKINHEAD]
/** 외벽선 */
const baseLines = wall.baseLines.filter((line) => line.attributes.planeSize > 0)
const baseLinePoints = baseLines.map((line) => ({ x: line.x1, y: line.y1 }))
/** 벽취합이 있는 경우 소매가 있다면 지붕 형상을 변경해야 한다. */
baseLines
.filter((line) => line.attributes.type === LINE_TYPE.WALLLINE.WALL && line.attributes.offset > 0)
.forEach((currentLine) => {
const prevLine = baseLines.find((line) => line.x2 === currentLine.x1 && line.y2 === currentLine.y1)
const nextLine = baseLines.find((line) => line.x1 === currentLine.x2 && line.y1 === currentLine.y2)
const currentMidX = Big(currentLine.x1).plus(Big(currentLine.x2)).div(2).toNumber()
const currentMidY = Big(currentLine.y1).plus(Big(currentLine.y2)).div(2).toNumber()
const currentVectorX = Math.sign(currentLine.x2 - currentLine.x1)
const currentVectorY = Math.sign(currentLine.y2 - currentLine.y1)
/** 현재 라인의 지붕 라인을 찾는다. */
const intersectionRoofs = []
let currentRoof
if (currentVectorX === 0) {
const checkEdge = {
vertex1: { x: prevLine.x1, y: currentMidY },
vertex2: { x: currentMidX, y: currentMidY },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === currentVectorX && Math.sign(line.y2 - line.y1) === currentVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
intersectionRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt(),
})
}
}
})
} else {
const checkEdge = {
vertex1: { x: currentMidX, y: prevLine.y1 },
vertex2: { x: currentMidX, y: currentMidY },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === currentVectorX && Math.sign(line.y2 - line.y1) === currentVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
intersectionRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt(),
})
}
}
})
}
if (intersectionRoofs.length > 0) {
currentRoof = intersectionRoofs.sort((a, b) => a.size - b.size)[0].line
}
if (currentRoof) {
const prevRoof = roof.lines.find((line) => line.x2 === currentRoof.x1 && line.y2 === currentRoof.y1)
const nextRoof = roof.lines.find((line) => line.x1 === currentRoof.x2 && line.y1 === currentRoof.y2)
const prevOffset = prevLine.attributes.offset
const nextOffset = nextLine.attributes.offset
currentRoof.set({ x1: currentLine.x1, y1: currentLine.y1, x2: currentLine.x2, y2: currentLine.y2 })
if (prevLine.attributes.type !== LINE_TYPE.WALLLINE.WALL && prevOffset > 0) {
const addPoint1 = []
const addPoint2 = []
if (Math.sign(prevLine.y2 - prevLine.y1) === 0) {
addPoint1.push(prevRoof.x2, prevRoof.y2, prevRoof.x2, currentRoof.y1)
addPoint2.push(addPoint1[2], addPoint1[3], currentRoof.x1, currentRoof.y1)
} else {
addPoint1.push(prevRoof.x2, prevRoof.y2, currentRoof.x1, prevRoof.y2)
addPoint2.push(addPoint1[2], addPoint1[3], currentRoof.x1, currentRoof.y1)
}
const addRoofLine1 = new QLine(addPoint1, {
name: 'addRoofLine',
parentId: roof.id,
fontSize: roof.fontSize,
stroke: '#1083E3',
strokeWidth: 2,
textMode: textMode,
attributes: {
roofId: roofId,
type: LINE_TYPE.WALLLINE.ETC,
planeSize: calcLinePlaneSize({
x1: addPoint1[0],
y1: addPoint1[1],
x2: addPoint1[2],
y2: addPoint1[3],
}),
actualSize: calcLinePlaneSize({
x1: addPoint1[0],
y1: addPoint1[1],
x2: addPoint1[2],
y2: addPoint1[3],
}),
},
})
const addRoofLine2 = new QLine(addPoint2, {
name: 'addRoofLine',
parentId: roof.id,
fontSize: roof.fontSize,
stroke: '#1083E3',
strokeWidth: 2,
textMode: textMode,
attributes: {
roofId: roofId,
type: LINE_TYPE.WALLLINE.ETC,
planeSize: calcLinePlaneSize({
x1: addPoint2[0],
y1: addPoint2[1],
x2: addPoint2[2],
y2: addPoint2[3],
}),
actualSize: calcLinePlaneSize({
x1: addPoint2[0],
y1: addPoint2[1],
x2: addPoint2[2],
y2: addPoint2[3],
}),
},
})
canvas.add(addRoofLine1, addRoofLine2)
canvas.renderAll()
const prevIndex = roof.lines.indexOf(prevRoof)
if (prevIndex === roof.lines.length - 1) {
roof.lines.unshift(addRoofLine1, addRoofLine2)
} else {
roof.lines.splice(prevIndex + 1, 0, addRoofLine1, addRoofLine2)
}
} else if (prevLine.attributes.type === LINE_TYPE.WALLLINE.WALL || prevOffset === 0) {
prevRoof.set({ x2: currentLine.x1, y2: currentLine.y1 })
}
if (nextLine.attributes.type !== LINE_TYPE.WALLLINE.WALL && nextOffset > 0) {
const addPoint1 = []
const addPoint2 = []
if (Math.sign(nextLine.y2 - nextLine.y1) === 0) {
addPoint1.push(currentRoof.x2, currentRoof.y2, nextRoof.x1, currentRoof.y2)
addPoint2.push(addPoint1[2], addPoint1[3], nextRoof.x1, nextRoof.y1)
} else {
addPoint1.push(currentRoof.x2, currentRoof.y2, currentRoof.x2, nextRoof.y1)
addPoint2.push(addPoint1[2], addPoint1[3], nextRoof.x1, nextRoof.y1)
}
const addRoofLine1 = new QLine(addPoint1, {
name: 'addRoofLine',
parentId: roof.id,
fontSize: roof.fontSize,
stroke: '#1083E3',
strokeWidth: 2,
textMode: textMode,
attributes: {
roofId: roofId,
type: LINE_TYPE.WALLLINE.ETC,
planeSize: calcLinePlaneSize({
x1: addPoint1[0],
y1: addPoint1[1],
x2: addPoint1[2],
y2: addPoint1[3],
}),
actualSize: calcLinePlaneSize({
x1: addPoint1[0],
y1: addPoint1[1],
x2: addPoint1[2],
y2: addPoint1[3],
}),
},
})
const addRoofLine2 = new QLine(addPoint2, {
name: 'addRoofLine',
parentId: roof.id,
fontSize: roof.fontSize,
stroke: '#1083E3',
strokeWidth: 2,
textMode: textMode,
attributes: {
roofId: roofId,
type: LINE_TYPE.WALLLINE.ETC,
planeSize: calcLinePlaneSize({
x1: addPoint2[0],
y1: addPoint2[1],
x2: addPoint2[2],
y2: addPoint2[3],
}),
actualSize: calcLinePlaneSize({
x1: addPoint2[0],
y1: addPoint2[1],
x2: addPoint2[2],
y2: addPoint2[3],
}),
},
})
canvas.add(addRoofLine1, addRoofLine2)
canvas.renderAll()
const nextIndex = roof.lines.indexOf(nextRoof)
if (nextIndex === 0) {
roof.lines.push(addRoofLine1, addRoofLine2)
} else {
roof.lines.splice(nextIndex, 0, addRoofLine1, addRoofLine2)
}
} else if (nextLine.attributes.type === LINE_TYPE.WALLLINE.WALL) {
if (Math.sign(nextLine.y2 - nextLine.y1) === 0) {
nextRoof.set({ x1: currentLine.x2, y1: nextRoof.y1 })
} else {
nextRoof.set({ x1: nextRoof.x1, y1: currentLine.y2 })
}
currentRoof.set({ x2: nextRoof.x1, y2: nextRoof.y1 })
} else if (nextOffset === 0) {
nextRoof.set({ x1: currentLine.x2, y1: currentLine.y2 })
}
roof = reDrawPolygon(roof, canvas)
}
})
/** 모양 판단을 위한 라인 처리.
* 평행한 라인이 나누어져 있는 경우 하나의 선으로 판단 한다.
*/
const drawBaseLines = []
baseLines.forEach((currentLine, index) => {
let nextLine = baseLines[(index + 1) % baseLines.length]
let prevLine = baseLines[(index - 1 + baseLines.length) % baseLines.length]
const currentAngle = calculateAngle(currentLine.startPoint, currentLine.endPoint)
const nextAngle = calculateAngle(nextLine.startPoint, nextLine.endPoint)
const prevAngle = calculateAngle(prevLine.startPoint, prevLine.endPoint)
let { x1, y1, x2, y2 } = currentLine
if (currentAngle !== prevAngle || (currentAngle === prevAngle && currentLine.attributes.type !== prevLine.attributes.type)) {
if (currentAngle === nextAngle && currentLine.attributes.type === nextLine.attributes.type) {
let nextIndex = baseLines.findIndex((line) => line === nextLine)
while (nextIndex !== index) {
const checkNextLine = baseLines[(nextIndex + 1 + baseLines.length) % baseLines.length]
const checkAngle = calculateAngle(checkNextLine.startPoint, checkNextLine.endPoint)
if (currentAngle !== checkAngle) {
x2 = checkNextLine.x1
y2 = checkNextLine.y1
break
} else {
nextIndex = nextIndex + 1
}
}
}
drawBaseLines.push({ x1, y1, x2, y2, line: currentLine, size: calcLinePlaneSize({ x1, y1, x2, y2 }) })
}
})
/** baseLine을 기준으로 확인용 polygon 작성 */
const checkWallPolygon = new QPolygon(baseLinePoints, {})
/**
* 외벽선이 시계방향인지 시계반대 방향인지 확인
* @type {boolean}
*/
let counterClockwise = true
let signedArea = 0
baseLinePoints.forEach((point, index) => {
const nextPoint = baseLinePoints[(index + 1) % baseLinePoints.length]
signedArea += point.x * nextPoint.y - point.y * nextPoint.x
})
if (signedArea > 0) {
counterClockwise = false
}
const drawEavesFirstLines = []
const drawEavesSecondLines = []
const drawGableRidgeFirst = []
const drawGableRidgeSecond = []
const drawGablePolygonFirst = []
const drawGablePolygonSecond = []
const drawHipAndGableFirst = []
const drawWallRidgeLine = []
/** 모양을 판단한다. */
drawBaseLines.forEach((currentBaseLine, index) => {
let prevBaseLine = drawBaseLines[(index - 1 + drawBaseLines.length) % drawBaseLines.length]
let nextBaseLine = drawBaseLines[(index + 1) % drawBaseLines.length]
const currentLine = currentBaseLine.line
const prevLine = prevBaseLine.line
const nextLine = nextBaseLine.line
const currentAngle = calculateAngle(currentLine.startPoint, currentLine.endPoint)
const prevAngle = calculateAngle(prevLine.startPoint, prevLine.endPoint)
const nextAngle = calculateAngle(nextLine.startPoint, nextLine.endPoint)
const checkScale = Big(10)
const xVector = Big(nextLine.x2).minus(Big(nextLine.x1))
const yVector = Big(nextLine.y2).minus(Big(nextLine.y1))
const currentMidX = Big(currentLine.x1).plus(Big(currentLine.x2)).div(2)
const currentMidY = Big(currentLine.y1).plus(Big(currentLine.y2)).div(2)
const checkPoints = {
x: currentMidX.plus(checkScale.times(Math.sign(xVector.toNumber()))).toNumber(),
y: currentMidY.plus(checkScale.times(Math.sign(yVector.toNumber()))).toNumber(),
}
/** 현재 라인이 처마유형일 경우 */
if (currentLine.attributes?.type === LINE_TYPE.WALLLINE.EAVES) {
if (nextLine.attributes?.type === LINE_TYPE.WALLLINE.EAVES) {
/**
* 이전, 다음 라인이 처마일때 라인의 방향이 반대면 ㄷ 모양으로 판단한다.
*/
if (prevLine.attributes?.type === LINE_TYPE.WALLLINE.EAVES && nextLine.attributes?.type === LINE_TYPE.WALLLINE.EAVES) {
if (Big(prevAngle).minus(Big(nextAngle)).abs().eq(180)) {
/**
* 다음라인 방향에 포인트를 확인해서 역방향 ㄷ 모양인지 판단한다.
* @type {{x: *, y: *}}
*/
if (checkWallPolygon.inPolygon(checkPoints)) {
drawEavesFirstLines.push({ currentBaseLine, prevBaseLine, nextBaseLine })
} else {
drawEavesSecondLines.push({ currentBaseLine, prevBaseLine, nextBaseLine })
}
} else {
drawEavesSecondLines.push({ currentBaseLine, prevBaseLine, nextBaseLine })
}
} else if (eavesType.includes(nextLine.attributes?.type)) {
drawEavesSecondLines.push({ currentBaseLine, prevBaseLine, nextBaseLine })
}
} else if (gableType.includes(nextLine.attributes?.type) && gableType.includes(prevLine.attributes?.type)) {
if (Big(prevAngle).minus(Big(nextAngle)).abs().eq(180)) {
if (checkWallPolygon.inPolygon(checkPoints)) {
drawGablePolygonFirst.push({ currentBaseLine, prevBaseLine, nextBaseLine })
} else {
drawGablePolygonSecond.push({ currentBaseLine, prevBaseLine, nextBaseLine })
}
drawGableRidgeSecond.push({ currentBaseLine, prevBaseLine, nextBaseLine })
} else {
if (currentAngle !== prevAngle && currentAngle !== nextAngle) {
drawGablePolygonSecond.push({ currentBaseLine, prevBaseLine, nextBaseLine })
}
}
}
}
if (gableType.includes(currentLine.attributes?.type)) {
if (
eavesType.includes(prevLine.attributes?.type) &&
eavesType.includes(nextLine.attributes?.type) &&
Big(prevAngle).minus(Big(nextAngle)).abs().eq(180)
) {
if (checkWallPolygon.inPolygon(checkPoints)) {
drawGableRidgeFirst.push({ currentBaseLine, prevBaseLine, nextBaseLine })
} else {
drawGableRidgeSecond.push({ currentBaseLine, prevBaseLine, nextBaseLine })
}
}
}
if (
LINE_TYPE.WALLLINE.HIPANDGABLE === currentLine.attributes?.type &&
eavesType.includes(nextLine.attributes?.type) &&
eavesType.includes(prevLine.attributes?.type)
) {
drawHipAndGableFirst.push({ currentBaseLine, prevBaseLine, nextBaseLine })
}
if (
LINE_TYPE.WALLLINE.WALL === currentLine.attributes?.type &&
eavesType.includes(nextLine.attributes?.type) &&
eavesType.includes(prevLine.attributes?.type)
) {
if (Big(prevAngle).minus(Big(nextAngle)).abs().eq(180) && checkWallPolygon.inPolygon(checkPoints)) {
drawWallRidgeLine.push({ currentBaseLine, prevBaseLine, nextBaseLine })
}
}
})
drawEavesFirstLines.sort((a, b) => a.currentBaseLine.size - b.currentBaseLine.size)
drawGableRidgeFirst.sort((a, b) => a.currentBaseLine.size - b.currentBaseLine.size)
drawGableRidgeSecond.sort((a, b) => a.currentBaseLine.size - b.currentBaseLine.size)
drawWallRidgeLine.sort((a, b) => a.currentBaseLine.size - b.currentBaseLine.size)
/** 추녀마루 */
let baseHipLines = []
/** 용마루 */
let baseRidgeLines = []
/** 박공지붕 마루*/
let baseGableRidgeLines = []
/** 박공지붕 라인*/
let baseGableLines = []
/** 용마루의 갯수*/
let baseRidgeCount = 0
// console.log('drawEavesFirstLines :', drawEavesFirstLines)
// console.log('drawEavesSecondLines :', drawEavesSecondLines)
// console.log('drawGableRidgeFirst: ', drawGableRidgeFirst)
// console.log('drawGableRidgeSecond:', drawGableRidgeSecond)
// console.log('drawGablePolygonFirst :', drawGablePolygonFirst)
// console.log('drawGablePolygonSecond :', drawGablePolygonSecond)
// console.log('drawHipAndGableFirst :', drawHipAndGableFirst)
// console.log('drawWallLines :', drawWallRidgeLine)
/** 박공지붕에서 파생되는 마루를 그린다. ㄷ 형태*/
drawGableRidgeFirst.forEach((current) => {
const { currentBaseLine, prevBaseLine, nextBaseLine } = current
const currentLine = currentBaseLine.line
const prevLine = prevBaseLine.line
const nextLine = nextBaseLine.line
let { x1, x2, y1, y2, size } = currentBaseLine
let beforePrevBaseLine, afterNextBaseLine
/** 이전 라인의 경사 */
const prevDegree = getDegreeByChon(prevLine.attributes.pitch)
/** 다음 라인의 경사 */
const nextDegree = getDegreeByChon(nextLine.attributes.pitch)
/** 이전 라인의 전라인, 다음 라인의 다음라인을 찾는다 */
drawBaseLines.forEach((line, index) => {
if (line === prevBaseLine) {
beforePrevBaseLine = drawBaseLines[(index - 1 + drawBaseLines.length) % drawBaseLines.length]
}
if (line === nextBaseLine) {
afterNextBaseLine = drawBaseLines[(index + 1) % drawBaseLines.length]
}
})
const beforePrevLine = beforePrevBaseLine?.line
const afterNextLine = afterNextBaseLine?.line
/** 각 라인의 흐름 방향을 확인한다. */
const currentAngle = calculateAngle(currentLine.startPoint, currentLine.endPoint)
const prevAngle = calculateAngle(prevLine.startPoint, prevLine.endPoint)
const nextAngle = calculateAngle(nextLine.startPoint, nextLine.endPoint)
const beforePrevAngle = calculateAngle(beforePrevLine.startPoint, beforePrevLine.endPoint)
const afterNextAngle = calculateAngle(afterNextLine.startPoint, afterNextLine.endPoint)
/** 현재라인의 vector*/
const currentVectorX = Math.sign(Big(x2).minus(Big(x1)).toNumber())
const currentVectorY = Math.sign(Big(y2).minus(Big(y1)).toNumber())
/** 이전라인의 vector*/
const prevVectorX = Math.sign(Big(prevLine.x2).minus(Big(prevLine.x1)))
const prevVectorY = Math.sign(Big(prevLine.y2).minus(Big(prevLine.y1)))
/** 다음라인의 vector*/
const nextVectorX = Math.sign(Big(nextLine.x2).minus(Big(nextLine.x1)))
const nextVectorY = Math.sign(Big(nextLine.y2).minus(Big(nextLine.y1)))
/** 현재라인의 기준점*/
let currentMidX = Big(x1).plus(Big(x2)).div(2).plus(Big(prevVectorX).times(currentLine.attributes.offset))
let currentMidY = Big(y1).plus(Big(y2)).div(2).plus(Big(prevVectorY).times(currentLine.attributes.offset))
/** 마루 반대 좌표*/
let oppositeMidX = currentMidX,
oppositeMidY = currentMidY
/** 현재 라인의 지붕 라인을 찾는다. */
const intersectionRoofs = []
let currentRoof
if (currentVectorX === 0) {
const checkEdge = {
vertex1: { x: prevLine.x1, y: currentMidY.toNumber() },
vertex2: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === currentVectorX && Math.sign(line.y2 - line.y1) === currentVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
intersectionRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt(),
})
}
}
})
} else {
const checkEdge = {
vertex1: { x: currentMidX.toNumber(), y: prevLine.y1 },
vertex2: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === currentVectorX && Math.sign(line.y2 - line.y1) === currentVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
intersectionRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt(),
})
}
}
})
}
if (intersectionRoofs.length > 0) {
currentRoof = intersectionRoofs.sort((a, b) => a.size - b.size)[0].line
}
/** 현재 라인의 지붕선에서 이전 지붕선, 다음 지붕선으로 향하는 vector*/
const prevRoofVectorX = Math.sign(currentRoof.x2 - currentRoof.x1)
const prevRoofVectorY = Math.sign(currentRoof.y2 - currentRoof.y1)
const nextRoofVectorX = Math.sign(currentRoof.x1 - currentRoof.x2)
const nextRoofVectorY = Math.sign(currentRoof.y1 - currentRoof.y2)
/** 한개의 지붕선을 둘로 나누어서 처리 하는 경우 */
if (prevAngle === beforePrevAngle || nextAngle === afterNextAngle) {
if (currentVectorX === 0) {
const addLength = Big(currentLine.y1).minus(Big(currentLine.y2)).abs().div(2)
const ridgeVector = Math.sign(prevLine.x1 - currentLine.x1)
oppositeMidX = Big(prevLine.x1).plus(Big(addLength).times(ridgeVector))
const ridgeEdge = {
vertex1: { x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() },
vertex2: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
}
const ridgeVectorX = Math.sign(ridgeEdge.vertex1.x - ridgeEdge.vertex2.x)
roof.lines
.filter((line) => line.x1 === line.x2)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const is = edgesIntersection(ridgeEdge, lineEdge)
if (is) {
const isVectorX = Math.sign(ridgeEdge.vertex1.x - is.x)
if (
isVectorX === ridgeVectorX &&
((line.x1 <= currentMidX && line.x2 >= currentMidX) || (line.x2 <= currentMidX && line.x1 >= currentMidX))
) {
currentMidX = Big(is.x)
currentMidY = Big(is.y)
}
}
})
} else {
const addLength = Big(currentLine.x1).minus(Big(currentLine.x2)).abs().div(2)
const ridgeVector = Math.sign(prevLine.y1 - currentLine.y1)
oppositeMidY = Big(prevLine.y1).plus(addLength.times(ridgeVector))
const ridgeEdge = {
vertex1: { x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() },
vertex2: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
}
const ridgeVectorY = Math.sign(ridgeEdge.vertex1.y - ridgeEdge.vertex2.y)
roof.lines
.filter((line) => line.y1 === line.y2)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const is = edgesIntersection(ridgeEdge, lineEdge)
if (is) {
const isVectorY = Math.sign(ridgeEdge.vertex1.y - is.y)
if (
isVectorY === ridgeVectorY &&
((line.x1 <= currentMidX && line.x2 >= currentMidX) || (line.x2 <= currentMidX && line.x1 >= currentMidX))
) {
currentMidX = Big(is.x)
currentMidY = Big(is.y)
}
}
})
}
const prevHipEdge = {
vertex1: { x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() },
vertex2: { x: prevLine.x1, y: prevLine.y1 },
}
const prevHipVectorX = Math.sign(prevHipEdge.vertex1.x - prevHipEdge.vertex2.x)
const prevHipVectorY = Math.sign(prevHipEdge.vertex1.y - prevHipEdge.vertex2.y)
const prevIsPoints = []
roof.lines
.filter((line) => (Math.sign(prevLine.x1 - prevLine.x2) === 0 ? line.x1 === line.x2 : line.y1 === line.y2))
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const is = edgesIntersection(prevHipEdge, lineEdge)
if (is) {
const isVectorX = Math.sign(prevHipEdge.vertex1.x - is.x)
const isVectorY = Math.sign(prevHipEdge.vertex1.y - is.y)
if (isVectorX === prevHipVectorX && isVectorY === prevHipVectorY) {
const size = Big(prevHipEdge.vertex1.x)
.minus(Big(is.x))
.abs()
.pow(2)
.plus(Big(prevHipEdge.vertex1.y).minus(Big(is.y)).abs().pow(2))
.sqrt()
.toNumber()
prevIsPoints.push({ is, size })
}
}
})
if (prevIsPoints.length > 0) {
const prevIs = prevIsPoints.sort((a, b) => a.size - b.size)[0].is
const prevHipLine = drawHipLine(
[prevIs.x, prevIs.y, oppositeMidX.toNumber(), oppositeMidY.toNumber()],
canvas,
roof,
textMode,
null,
prevDegree,
prevDegree,
)
baseHipLines.push({
x1: prevLine.x1,
y1: prevLine.y1,
x2: oppositeMidX.toNumber(),
y2: oppositeMidY.toNumber(),
line: prevHipLine,
})
}
const nextHipEdge = {
vertex1: { x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() },
vertex2: { x: nextLine.x2, y: nextLine.y2 },
}
const nextHipVectorX = Math.sign(nextHipEdge.vertex1.x - nextHipEdge.vertex2.x)
const nextHipVectorY = Math.sign(nextHipEdge.vertex1.y - nextHipEdge.vertex2.y)
const nextIsPoints = []
roof.lines
.filter((line) => (Math.sign(nextLine.x1 - nextLine.x2) === 0 ? line.x1 === line.x2 : line.y1 === line.y2))
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const is = edgesIntersection(nextHipEdge, lineEdge)
if (is) {
const isVectorX = Math.sign(nextHipEdge.vertex1.x - is.x)
const isVectorY = Math.sign(nextHipEdge.vertex1.y - is.y)
if (isVectorX === nextHipVectorX && isVectorY === nextHipVectorY) {
const size = Big(nextHipEdge.vertex1.x)
.minus(Big(is.x))
.abs()
.pow(2)
.plus(Big(nextHipEdge.vertex1.y).minus(Big(is.y)).abs().pow(2))
.sqrt()
.toNumber()
nextIsPoints.push({ is, size })
}
}
})
if (nextIsPoints.length > 0) {
const nextIs = nextIsPoints.sort((a, b) => a.size - b.size)[0].is
const nextHipLine = drawHipLine(
[nextIs.x, nextIs.y, oppositeMidX.toNumber(), oppositeMidY.toNumber()],
canvas,
roof,
textMode,
null,
nextDegree,
nextDegree,
)
baseHipLines.push({
x1: nextLine.x2,
y1: nextLine.y2,
x2: oppositeMidX.toNumber(),
y2: oppositeMidY.toNumber(),
line: nextHipLine,
})
}
const vectorOppositeX = Math.sign(currentMidX.minus(oppositeMidX))
const vectorOppositeY = Math.sign(currentMidY.minus(oppositeMidY))
/** 반철처 인 경우 처리 */
if (currentLine.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
const width = Big(currentLine.attributes.width).div(2)
const degree = getDegreeByChon(currentLine.attributes.pitch)
const prevDegree = getDegreeByChon(prevLine.attributes.pitch)
const nextDegree = getDegreeByChon(nextLine.attributes.pitch)
if (vectorOppositeY === 0) {
currentMidX = currentMidX.minus(Big(width).times(vectorOppositeX))
} else {
currentMidY = currentMidY.minus(Big(width).times(vectorOppositeY))
}
/** 현재 라인에서 반철처 부분을 그린다.*/
let firstHipPoint, secondHipPoint, connectHipPoint, firstRoofPoint, secondRoofPoint
if (vectorOppositeY === 0) {
firstHipPoint = [
currentMidX.plus(Big(width).times(vectorOppositeX)).toNumber(),
currentMidY.minus(Big(width).times(prevRoofVectorY)).toNumber(),
currentMidX.toNumber(),
currentMidY.toNumber(),
]
secondHipPoint = [
currentMidX.plus(Big(width).times(vectorOppositeX)).toNumber(),
currentMidY.minus(Big(width).times(nextRoofVectorY)).toNumber(),
currentMidX.toNumber(),
currentMidY.toNumber(),
]
} else {
firstHipPoint = [
currentMidX.plus(Big(width).times(prevRoofVectorX)).toNumber(),
currentMidY.plus(Big(width).times(vectorOppositeY)).toNumber(),
currentMidX.toNumber(),
currentMidY.toNumber(),
]
secondHipPoint = [
currentMidX.plus(Big(width).times(nextRoofVectorX)).toNumber(),
currentMidY.plus(Big(width).times(vectorOppositeY)).toNumber(),
currentMidX.toNumber(),
currentMidY.toNumber(),
]
}
connectHipPoint = [firstHipPoint[0], firstHipPoint[1], secondHipPoint[0], secondHipPoint[1]]
firstRoofPoint = [currentRoof.x1, currentRoof.y1, firstHipPoint[0], firstHipPoint[1]]
secondRoofPoint = [currentRoof.x2, currentRoof.y2, secondHipPoint[0], secondHipPoint[1]]
const firstHipLine = drawHipLine(firstHipPoint, canvas, roof, textMode, null, degree, degree)
const firstRoofLine = drawHipLine(firstRoofPoint, canvas, roof, textMode, null, prevDegree, prevDegree)
const secondHipLine = drawHipLine(secondHipPoint, canvas, roof, textMode, null, degree, degree)
const secondRoofLine = drawHipLine(secondRoofPoint, canvas, roof, textMode, null, nextDegree, nextDegree)
const connectHipLine = drawRoofLine(connectHipPoint, canvas, roof, textMode)
baseHipLines.push({ x1: firstHipLine.x1, y1: firstHipLine.y1, x2: firstHipLine.x2, y2: firstHipLine.y2, line: firstHipLine })
baseHipLines.push({ x1: firstRoofLine.x1, y1: firstRoofLine.y1, x2: firstRoofLine.x2, y2: firstRoofLine.y2, line: firstRoofLine })
baseHipLines.push({ x1: secondHipLine.x1, y1: secondHipLine.y1, x2: secondHipLine.x2, y2: secondHipLine.y2, line: secondHipLine })
baseHipLines.push({ x1: secondRoofLine.x1, y1: secondRoofLine.y1, x2: secondRoofLine.x2, y2: secondRoofLine.y2, line: secondRoofLine })
baseHipLines.push({ x1: connectHipLine.x1, y1: connectHipLine.y1, x2: connectHipLine.x2, y2: connectHipLine.y2, line: connectHipLine })
} else {
const firstHipPoint = [currentRoof.x1, currentRoof.y1, currentMidX.toNumber(), currentMidY.toNumber()]
const secondHipPoint = [currentRoof.x2, currentRoof.y2, currentMidX.toNumber(), currentMidY.toNumber()]
const firstHipLine = drawHipLine(firstHipPoint, canvas, roof, textMode, null, prevDegree, prevDegree)
const secondHipLine = drawHipLine(secondHipPoint, canvas, roof, textMode, null, nextDegree, nextDegree)
baseHipLines.push({ x1: firstHipLine.x1, y1: firstHipLine.y1, x2: firstHipLine.x2, y2: firstHipLine.y2, line: firstHipLine })
baseHipLines.push({ x1: secondHipLine.x1, y1: secondHipLine.y1, x2: secondHipLine.x2, y2: secondHipLine.y2, line: secondHipLine })
}
if (baseRidgeCount < getMaxRidge(baseLines.length)) {
const ridgeLine = drawRidgeLine(
[currentMidX.toNumber(), currentMidY.toNumber(), oppositeMidX.toNumber(), oppositeMidY.toNumber()],
canvas,
roof,
textMode,
)
baseGableRidgeLines.push(ridgeLine)
baseRidgeCount++
}
} else {
if (beforePrevBaseLine === afterNextBaseLine) {
const afterNextMidX = Big(afterNextLine.x1).plus(Big(afterNextLine.x2)).div(2)
const afterNextMidY = Big(afterNextLine.y1).plus(Big(afterNextLine.y2)).div(2)
const vectorMidX = Math.sign(currentMidX.minus(afterNextMidX))
const vectorMidY = Math.sign(currentMidY.minus(afterNextMidY))
let oppositeMidX, oppositeMidY
if (afterNextLine.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
const checkSize = currentMidX
.minus(afterNextMidX)
.pow(2)
.plus(currentMidY.minus(afterNextMidY).pow(2))
.sqrt()
.minus(Big(afterNextLine.attributes.planeSize).div(20))
.round(1)
oppositeMidX = currentMidX.plus(checkSize.times(vectorMidX).neg())
oppositeMidY = currentMidY.plus(checkSize.times(vectorMidY).neg())
const xVector1 = Math.sign(Big(oppositeMidX).minus(Big(afterNextLine.x1)).neg().toNumber())
const yVector1 = Math.sign(Big(oppositeMidY).minus(Big(afterNextLine.y1)).neg().toNumber())
const xVector2 = Math.sign(Big(oppositeMidX).minus(Big(afterNextLine.x2)).neg().toNumber())
const yVector2 = Math.sign(Big(oppositeMidY).minus(Big(afterNextLine.y2)).neg().toNumber())
let addOppositeX1 = 0,
addOppositeY1 = 0,
addOppositeX2 = 0,
addOppositeY2 = 0
if (!checkWallPolygon.inPolygon({ x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() })) {
const checkScale = currentMidX.minus(oppositeMidX).pow(2).plus(currentMidY.minus(oppositeMidY).pow(2)).sqrt()
addOppositeX1 = checkScale.times(xVector1).toNumber()
addOppositeY1 = checkScale.times(yVector1).toNumber()
addOppositeX2 = checkScale.times(xVector2).toNumber()
addOppositeY2 = checkScale.times(yVector2).toNumber()
}
let scale1 = Big(afterNextLine.attributes.offset).pow(2).plus(Big(nextLine.attributes.offset).pow(2)).sqrt()
scale1 = scale1.eq(0) ? Big(1) : scale1
let scale2 = Big(afterNextLine.attributes.offset).pow(2).plus(Big(prevLine.attributes.offset).pow(2)).sqrt()
scale2 = scale2.eq(0) ? Big(1) : scale2
const checkHip1 = {
x1: Big(afterNextLine.x1).plus(scale1.times(xVector1)).toNumber(),
y1: Big(afterNextLine.y1).plus(scale1.times(yVector1)).toNumber(),
x2: oppositeMidX.plus(addOppositeX1).toNumber(),
y2: oppositeMidY.plus(addOppositeY1).toNumber(),
}
const checkHip2 = {
x1: Big(afterNextLine.x2).plus(scale2.times(xVector2)).toNumber(),
y1: Big(afterNextLine.y2).plus(scale2.times(yVector2)).toNumber(),
x2: oppositeMidX.plus(addOppositeX2).toNumber(),
y2: oppositeMidY.plus(addOppositeY2).toNumber(),
}
const intersection1 = findRoofIntersection(roof, checkHip1, {
x: oppositeMidX.plus(addOppositeX1),
y: oppositeMidY.plus(addOppositeY1),
})
const intersection2 = findRoofIntersection(roof, checkHip2, {
x: oppositeMidX.plus(addOppositeX2),
y: oppositeMidY.plus(addOppositeY2),
})
const afterNextDegree = getDegreeByChon(afterNextLine.attributes.pitch)
if (intersection1) {
const hipLine = drawHipLine(
[intersection1.intersection.x, intersection1.intersection.y, oppositeMidX.plus(addOppositeX1), oppositeMidY.plus(addOppositeY1)],
canvas,
roof,
textMode,
null,
nextDegree,
afterNextDegree,
)
baseHipLines.push({
x1: afterNextLine.x1,
y1: afterNextLine.y1,
x2: oppositeMidX.plus(addOppositeX1).toNumber(),
y2: oppositeMidY.plus(addOppositeY1).toNumber(),
line: hipLine,
})
}
if (intersection2) {
const hipLine = drawHipLine(
[intersection2.intersection.x, intersection2.intersection.y, oppositeMidX.plus(addOppositeX2), oppositeMidY.plus(addOppositeY2)],
canvas,
roof,
textMode,
null,
prevDegree,
afterNextDegree,
)
baseHipLines.push({
x1: afterNextLine.x2,
y1: afterNextLine.y2,
x2: oppositeMidX.plus(addOppositeX2).toNumber(),
y2: oppositeMidY.plus(addOppositeY2).toNumber(),
line: hipLine,
})
}
} else {
oppositeMidX = Big(afterNextLine.x1).plus(Big(afterNextLine.x2)).div(2).plus(Big(prevVectorX).neg().times(afterNextLine.attributes.offset))
oppositeMidY = Big(afterNextLine.y1).plus(Big(afterNextLine.y2)).div(2).plus(Big(prevVectorY).neg().times(afterNextLine.attributes.offset))
}
const vectorOppositeX = Math.sign(currentMidX.minus(oppositeMidX))
const vectorOppositeY = Math.sign(currentMidY.minus(oppositeMidY))
if (vectorMidX === vectorOppositeX && vectorMidY === vectorOppositeY) {
if (!roof.inPolygon({ x: currentMidX.toNumber(), y: currentMidY.toNumber() })) {
const checkEdge = {
vertex1: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
vertex2: { x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() },
}
const intersectionPoints = []
roof.lines
.filter((line) => (currentVectorX === 0 ? line.x1 === line.x2 : line.y1 === line.y2))
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (
intersection &&
((line.x1 <= intersection.x && line.x2 >= intersection.x && line.y1 <= intersection.y && line.y2 >= intersection.y) ||
(line.x2 <= intersection.x && line.x1 >= intersection.x && line.y2 <= intersection.y && line.y1 >= intersection.y))
) {
const size = Big(intersection.x)
.minus(currentMidX)
.abs()
.pow(2)
.plus(Big(intersection.y).minus(currentMidY).abs().pow(2))
.sqrt()
.toNumber()
intersectionPoints.push({ intersection, size })
}
})
if (intersectionPoints.length > 0) {
const intersection = intersectionPoints.sort((a, b) => a.size - b.size)[0].intersection
currentMidX = Big(intersection.x)
currentMidY = Big(intersection.y)
}
}
if (!roof.inPolygon({ x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() })) {
const checkEdge = {
vertex1: { x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() },
vertex2: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
}
const intersectionPoints = []
roof.lines
.filter((line) => (currentVectorX === 0 ? line.x1 === line.x2 : line.y1 === line.y2))
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (
intersection &&
((line.x1 <= intersection.x && line.x2 >= intersection.x && line.y1 <= intersection.y && line.y2 >= intersection.y) ||
(line.x2 <= intersection.x && line.x1 >= intersection.x && line.y2 <= intersection.y && line.y1 >= intersection.y))
) {
const size = Big(intersection.x)
.minus(oppositeMidX)
.abs()
.pow(2)
.plus(Big(intersection.y).minus(oppositeMidY).abs().pow(2))
.sqrt()
.toNumber()
intersectionPoints.push({ intersection, size })
}
})
if (intersectionPoints.length > 0) {
const intersection = intersectionPoints.sort((a, b) => a.size - b.size)[0].intersection
oppositeMidX = Big(intersection.x)
oppositeMidY = Big(intersection.y)
}
}
if (afterNextLine.attributes.type === LINE_TYPE.WALLLINE.HIPANDGABLE) {
const width = afterNextLine.attributes.width
if (vectorOppositeY === 0) {
oppositeMidX = oppositeMidX.plus(Big(width).times(vectorOppositeX))
} else {
oppositeMidY = oppositeMidY.plus(Big(width).times(vectorOppositeY))
}
}
if (afterNextLine.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
const width = Big(afterNextLine.attributes.width).div(2).toNumber()
if (vectorOppositeY === 0) {
oppositeMidX = oppositeMidX.plus(Big(width).times(vectorOppositeX))
} else {
oppositeMidY = oppositeMidY.plus(Big(width).times(vectorOppositeY))
}
}
/** 반철처 인 경우 처리 */
if (currentLine.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
const width = Big(currentLine.attributes.width).div(2)
const degree = getDegreeByChon(currentLine.attributes.pitch)
const prevDegree = getDegreeByChon(prevLine.attributes.pitch)
const nextDegree = getDegreeByChon(nextLine.attributes.pitch)
if (vectorMidY === 0) {
currentMidX = currentMidX.minus(Big(width).times(vectorOppositeX))
} else {
currentMidY = currentMidY.minus(Big(width).times(vectorOppositeY))
}
/** 현재 라인에서 반철처 부분을 그린다.*/
let firstHipPoint, secondHipPoint, connectHipPoint, firstRoofPoint, secondRoofPoint
if (vectorMidY === 0) {
firstHipPoint = [
currentMidX.plus(Big(width).times(vectorOppositeX)).toNumber(),
currentMidY.minus(Big(width).times(prevRoofVectorY)).toNumber(),
currentMidX.toNumber(),
currentMidY.toNumber(),
]
secondHipPoint = [
currentMidX.plus(Big(width).times(vectorOppositeX)).toNumber(),
currentMidY.minus(Big(width).times(nextRoofVectorY)).toNumber(),
currentMidX.toNumber(),
currentMidY.toNumber(),
]
} else {
firstHipPoint = [
currentMidX.minus(Big(width).times(prevRoofVectorX)).toNumber(),
currentMidY.plus(Big(width).times(vectorOppositeY)).toNumber(),
currentMidX.toNumber(),
currentMidY.toNumber(),
]
secondHipPoint = [
currentMidX.minus(Big(width).times(nextRoofVectorX)).toNumber(),
currentMidY.plus(Big(width).times(vectorOppositeY)).toNumber(),
currentMidX.toNumber(),
currentMidY.toNumber(),
]
}
connectHipPoint = [firstHipPoint[0], firstHipPoint[1], secondHipPoint[0], secondHipPoint[1]]
firstRoofPoint = [currentRoof.x1, currentRoof.y1, firstHipPoint[0], firstHipPoint[1]]
secondRoofPoint = [currentRoof.x2, currentRoof.y2, secondHipPoint[0], secondHipPoint[1]]
const firstHipLine = drawHipLine(firstHipPoint, canvas, roof, textMode, null, degree, degree)
const firstRoofLine = drawHipLine(firstRoofPoint, canvas, roof, textMode, null, prevDegree, prevDegree)
const secondHipLine = drawHipLine(secondHipPoint, canvas, roof, textMode, null, degree, degree)
const secondRoofLine = drawHipLine(secondRoofPoint, canvas, roof, textMode, null, nextDegree, nextDegree)
const connectHipLine = drawRoofLine(connectHipPoint, canvas, roof, textMode)
baseHipLines.push({ x1: firstHipLine.x1, y1: firstHipLine.y1, x2: firstHipLine.x2, y2: firstHipLine.y2, line: firstHipLine })
baseHipLines.push({ x1: firstRoofLine.x1, y1: firstRoofLine.y1, x2: firstRoofLine.x2, y2: firstRoofLine.y2, line: firstRoofLine })
baseHipLines.push({ x1: secondHipLine.x1, y1: secondHipLine.y1, x2: secondHipLine.x2, y2: secondHipLine.y2, line: secondHipLine })
baseHipLines.push({ x1: secondRoofLine.x1, y1: secondRoofLine.y1, x2: secondRoofLine.x2, y2: secondRoofLine.y2, line: secondRoofLine })
baseHipLines.push({ x1: connectHipLine.x1, y1: connectHipLine.y1, x2: connectHipLine.x2, y2: connectHipLine.y2, line: connectHipLine })
} else {
const firstHipPoint = [currentRoof.x1, currentRoof.y1, currentMidX.toNumber(), currentMidY.toNumber()]
const secondHipPoint = [currentRoof.x2, currentRoof.y2, currentMidX.toNumber(), currentMidY.toNumber()]
const firstHipLine = drawHipLine(firstHipPoint, canvas, roof, textMode, null, prevDegree, prevDegree)
const secondHipLine = drawHipLine(secondHipPoint, canvas, roof, textMode, null, nextDegree, nextDegree)
baseHipLines.push({ x1: firstHipLine.x1, y1: firstHipLine.y1, x2: firstHipLine.x2, y2: firstHipLine.y2, line: firstHipLine })
baseHipLines.push({ x1: secondHipLine.x1, y1: secondHipLine.y1, x2: secondHipLine.x2, y2: secondHipLine.y2, line: secondHipLine })
}
if (baseRidgeCount < getMaxRidge(baseLines.length)) {
const ridge = drawRidgeLine(
[currentMidX.toNumber(), currentMidY.toNumber(), oppositeMidX.toNumber(), oppositeMidY.toNumber()],
canvas,
roof,
textMode,
)
baseGableRidgeLines.push(ridge)
baseRidgeCount++
}
}
} else {
const vectorMidX = Math.sign(Big(nextLine.x2).minus(nextLine.x1))
const vectorMidY = Math.sign(Big(nextLine.y2).minus(nextLine.y1))
let prevOppositeMidX, prevOppositeMidY, nextOppositeMidX, nextOppositeMidY
const beforePrevOffset =
currentAngle === beforePrevAngle
? Big(beforePrevLine.attributes.offset)
: Big(beforePrevLine.attributes.offset).plus(currentLine.attributes.offset)
const afterNextOffset =
currentAngle === afterNextAngle
? Big(afterNextLine.attributes.offset)
: Big(afterNextLine.attributes.offset).plus(currentLine.attributes.offset)
const prevSize = Big(prevLine.attributes.planeSize).div(10)
const nextSize = Big(nextLine.attributes.planeSize).div(10)
let prevHipCoords, nextHipCoords
/** 다음 라인이 그 다음 라인과의 사이에 추녀마루가 존재 하는지 확인. 처마-처마 인 경우 추녀마루*/
if (eavesType.includes(afterNextLine.attributes?.type)) {
/** 현재 라인의 길이를 기준으로 추녀 마루의 길이를 삼각함수를 사용하여 판단한다.*/
let hipLength = Big(size).div(10).div(2).pow(2).plus(Big(size).div(10).div(2).pow(2)).sqrt()
const nextHalfVector = getHalfAngleVector(nextLine, afterNextLine)
let nextHipVector = { x: nextHalfVector.x, y: nextHalfVector.y }
/** 이전 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const nextCheckPoint = {
x: Big(nextLine.x2).plus(Big(nextHalfVector.x).times(10)),
y: Big(nextLine.y2).plus(Big(nextHalfVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(nextCheckPoint)) {
nextHipVector = { x: Big(nextHipVector.x).neg().toNumber(), y: Big(nextHipVector.y).neg().toNumber() }
}
const nextEndPoint = {
x: Big(nextLine.x2).plus(Big(nextHipVector.x).times(hipLength)),
y: Big(nextLine.y2).plus(Big(nextHipVector.y).times(hipLength)),
}
let ridgeEdge = {
vertex1: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
vertex2: {
x: currentMidX.plus(Big(nextVectorX).times(nextBaseLine.size)).toNumber(),
y: currentMidY.plus(Big(nextVectorY).times(nextBaseLine.size)).toNumber(),
},
}
let hipEdge = {
vertex1: { x: nextLine.x2, y: nextLine.y2 },
vertex2: { x: nextEndPoint.x, y: nextEndPoint.y },
}
let intersection = edgesIntersection(ridgeEdge, hipEdge)
if (intersection) {
nextHipCoords = { x1: nextLine.x2, y1: nextLine.y2, x2: intersection.x, y2: intersection.y }
nextOppositeMidY = Big(intersection.y)
nextOppositeMidX = Big(intersection.x)
}
} else {
if (vectorMidX === 0) {
nextOppositeMidY = currentMidY.plus(nextSize.plus(afterNextOffset).times(vectorMidY))
nextOppositeMidX = currentMidX
} else {
nextOppositeMidX = currentMidX.plus(nextSize.plus(afterNextOffset).times(vectorMidX))
nextOppositeMidY = currentMidY
}
}
/** 이전 라인이 그 이전 라인과의 사이에 추녀마루가 존재 하는지 확인. 처마-처마 인 경우 추녀마루*/
if (eavesType.includes(beforePrevLine.attributes?.type)) {
/** 현재 라인의 길이를 기준으로 추녀 마루의 길이를 삼각함수를 사용하여 판단한다.*/
let hipLength = Big(size).div(10).div(2).pow(2).plus(Big(size).div(10).div(2).pow(2)).sqrt()
const prevHalfVector = getHalfAngleVector(prevLine, beforePrevLine)
let prevHipVector = { x: prevHalfVector.x, y: prevHalfVector.y }
/** 이전 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const prevCheckPoint = {
x: Big(prevLine.x1).plus(Big(prevHalfVector.x).times(10)),
y: Big(prevLine.y1).plus(Big(prevHalfVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(prevCheckPoint)) {
prevHipVector = { x: Big(prevHipVector.x).neg().toNumber(), y: Big(prevHipVector.y).neg().toNumber() }
}
const prevEndPoint = {
x: Big(prevLine.x1).plus(Big(prevHipVector.x).times(hipLength)),
y: Big(prevLine.y1).plus(Big(prevHipVector.y).times(hipLength)),
}
let ridgeEdge = {
vertex1: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
vertex2: {
x: currentMidX.plus(Big(prevVectorX).times(prevBaseLine.size)).toNumber(),
y: currentMidY.plus(Big(prevVectorY).times(prevBaseLine.size)).toNumber(),
},
}
let hipEdge = {
vertex1: { x: prevLine.x1, y: prevLine.y1 },
vertex2: { x: prevEndPoint.x, y: prevEndPoint.y },
}
let intersection = edgesIntersection(ridgeEdge, hipEdge)
if (intersection) {
prevHipCoords = { x1: prevLine.x1, y1: prevLine.y1, x2: intersection.x, y2: intersection.y }
prevOppositeMidY = Big(intersection.y)
prevOppositeMidX = Big(intersection.x)
}
} else {
if (vectorMidX === 0) {
prevOppositeMidY = currentMidY.plus(prevSize.plus(beforePrevOffset).times(vectorMidY))
prevOppositeMidX = currentMidX
} else {
prevOppositeMidX = currentMidX.plus(prevSize.plus(beforePrevOffset).times(vectorMidX))
prevOppositeMidY = currentMidY
}
}
const currentMidEdge = {
vertex1: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
vertex2: {
x: currentVectorX === 0 ? nextLine.x2 : currentMidX.toNumber(),
y: currentVectorX === 0 ? currentMidY.toNumber() : nextLine.y2,
},
}
let oppositeLines = []
drawBaseLines
.filter((line, index) => {
const currentLine = line.line
const nextLine = drawBaseLines[(index + 1) % drawBaseLines.length].line
const prevLine = drawBaseLines[(index - 1 + drawBaseLines.length) % drawBaseLines.length].line
const angle = calculateAngle(currentLine.startPoint, currentLine.endPoint)
const prevAngle = calculateAngle(prevLine.startPoint, prevLine.endPoint)
const nextAngle = calculateAngle(nextLine.startPoint, nextLine.endPoint)
if (angle === prevAngle || angle === nextAngle) {
const sameAngleLine = angle === prevAngle ? prevLine : nextLine
if (gableType.includes(currentLine.attributes.type) && !gableType.includes(sameAngleLine.attributes.type)) {
switch (currentAngle) {
case 90:
return angle === -90
case -90:
return angle === 90
case 0:
return angle === 180
case 180:
return angle === 0
}
}
}
return false
})
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(currentMidEdge, lineEdge)
if (intersection) {
if (line.x1 <= intersection.x && line.x2 >= intersection.x && line.y1 <= intersection.y && line.y2 >= intersection.y) {
oppositeLines.push({
line,
intersection,
size: Big(intersection.x)
.minus(currentMidX)
.abs()
.pow(2)
.plus(Big(intersection.y).minus(currentMidY).abs().pow(2))
.sqrt()
.toNumber(),
})
}
}
})
if (oppositeLines.length > 0) {
const oppositePoint = oppositeLines.sort((a, b) => a.size - b.size)[0].intersection
const checkEdge = {
vertex1: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
vertex2: { x: oppositePoint.x, y: oppositePoint.y },
}
const oppositeRoofPoints = []
roof.lines
.filter((line) => {
const angle = calculateAngle(line.startPoint, line.endPoint)
switch (currentAngle) {
case 90:
return angle === -90
case -90:
return angle === 90
case 0:
return angle === 180
case 180:
return angle === 0
}
})
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (
intersection &&
((line.x1 <= intersection.x && line.x2 >= intersection.x && line.y1 <= intersection.y && line.y2 >= intersection.y) ||
(line.x1 >= intersection.x && line.x2 <= intersection.x && line.y1 >= intersection.y && line.y2 <= intersection.y))
) {
oppositeRoofPoints.push({
line,
intersection,
size: Big(intersection.x)
.minus(currentMidX.toNumber())
.abs()
.pow(2)
.plus(Big(intersection.y).minus(currentMidY.toNumber()).abs().pow(2))
.sqrt()
.toNumber(),
})
}
})
const oppositeRoofPoint = oppositeRoofPoints.sort((a, b) => a.size - b.size)[0].intersection
oppositeMidX = Big(oppositeRoofPoint.x)
oppositeMidY = Big(oppositeRoofPoint.y)
const currentRoofPoints = []
roof.lines
.filter((line) => {
const angle = calculateAngle(line.startPoint, line.endPoint)
return currentAngle === angle
})
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (
intersection &&
((line.x1 <= intersection.x && line.x2 >= intersection.x && line.y1 <= intersection.y && line.y2 >= intersection.y) ||
(line.x1 >= intersection.x && line.x2 <= intersection.x && line.y1 >= intersection.y && line.y2 <= intersection.y))
) {
currentRoofPoints.push({
line,
intersection,
size: Big(intersection.x)
.minus(currentMidX.toNumber())
.abs()
.pow(2)
.plus(Big(intersection.y).minus(currentMidY.toNumber()).abs().pow(2))
.sqrt()
.toNumber(),
})
}
})
const currentRoofPoint = currentRoofPoints.sort((a, b) => a.size - b.size)[0].intersection
currentMidX = Big(currentRoofPoint.x)
currentMidY = Big(currentRoofPoint.y)
} else {
const checkPrevSize = currentMidX.minus(prevOppositeMidX).pow(2).plus(currentMidY.minus(prevOppositeMidY).pow(2)).sqrt()
const checkNextSize = currentMidX.minus(nextOppositeMidX).pow(2).plus(currentMidY.minus(nextOppositeMidY).pow(2)).sqrt()
/** 두 포인트 중에 current와 가까운 포인트를 사용*/
if (checkPrevSize.gt(checkNextSize)) {
if (nextHipCoords) {
let intersectPoints = []
const hipEdge = {
vertex1: { x: nextHipCoords.x2, y: nextHipCoords.y2 },
vertex2: { x: nextHipCoords.x1, y: nextHipCoords.y1 },
}
/** 외벽선에서 라인 겹치는 경우에 대한 확인*/
roof.lines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(hipEdge, lineEdge)
if (
intersection &&
Math.sign(nextHipCoords.x2 - nextHipCoords.x1) === Math.sign(nextHipCoords.x2 - intersection.x) &&
Math.sign(nextHipCoords.y2 - nextHipCoords.y1) === Math.sign(nextHipCoords.y2 - intersection.y)
) {
const intersectEdge = {
vertex1: { x: nextHipCoords.x2, y: nextHipCoords.y2 },
vertex2: { x: intersection.x, y: intersection.y },
}
const is = edgesIntersection(intersectEdge, lineEdge)
if (!is.isIntersectionOutside) {
const intersectSize = Big(nextHipCoords.x2)
.minus(Big(intersection.x))
.pow(2)
.plus(Big(nextHipCoords.y2).minus(Big(intersection.y)).pow(2))
.abs()
.sqrt()
.toNumber()
intersectPoints.push({
intersection,
size: intersectSize,
line,
})
}
}
})
const intersect = intersectPoints.sort((a, b) => a.size - b.size)[0]
if (intersect) {
const degree = getDegreeByChon(intersect.line.attributes.pitch)
const hipLine = drawHipLine(
[intersect.intersection.x, intersect.intersection.y, nextOppositeMidX.toNumber(), nextOppositeMidY.toNumber()],
canvas,
roof,
textMode,
null,
degree,
degree,
)
baseHipLines.push({
x1: nextHipCoords.x1,
y1: nextHipCoords.y1,
x2: nextHipCoords.x2,
y2: nextHipCoords.y2,
line: hipLine,
})
}
}
oppositeMidY = nextOppositeMidY
oppositeMidX = nextOppositeMidX
} else {
if (prevHipCoords) {
let intersectPoints = []
const hipEdge = {
vertex1: { x: prevHipCoords.x2, y: prevHipCoords.y2 },
vertex2: { x: prevHipCoords.x1, y: prevHipCoords.y1 },
}
/** 외벽선에서 라인 겹치는 경우에 대한 확인*/
roof.lines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(hipEdge, lineEdge)
if (
intersection &&
Math.sign(prevHipCoords.x2 - prevHipCoords.x1) === Math.sign(prevHipCoords.x2 - intersection.x) &&
Math.sign(prevHipCoords.y2 - prevHipCoords.y1) === Math.sign(prevHipCoords.y2 - intersection.y)
) {
const intersectEdge = {
vertex1: { x: prevHipCoords.x2, y: prevHipCoords.y2 },
vertex2: { x: intersection.x, y: intersection.y },
}
const is = edgesIntersection(intersectEdge, lineEdge)
if (!is.isIntersectionOutside) {
const intersectSize = Big(prevHipCoords.x2)
.minus(Big(intersection.x))
.pow(2)
.plus(Big(prevHipCoords.y2).minus(Big(intersection.y)).pow(2))
.abs()
.sqrt()
.toNumber()
intersectPoints.push({
intersection,
size: intersectSize,
line,
})
}
}
})
const intersect = intersectPoints.sort((a, b) => a.size - b.size)[0]
if (intersect) {
const degree = getDegreeByChon(intersect.line.attributes.pitch)
const hipLine = drawHipLine(
[intersect.intersection.x, intersect.intersection.y, prevOppositeMidX.toNumber(), prevOppositeMidY.toNumber()],
canvas,
roof,
textMode,
null,
degree,
degree,
)
baseHipLines.push({
x1: prevHipCoords.x1,
y1: prevHipCoords.y1,
x2: prevHipCoords.x2,
y2: prevHipCoords.y2,
line: hipLine,
})
}
}
oppositeMidY = prevOppositeMidY
oppositeMidX = prevOppositeMidX
}
}
/** 포인트가 지붕 밖에 있는 경우 조정 */
if (!roof.inPolygon({ x: currentMidX.toNumber(), y: currentMidY.toNumber() })) {
const checkEdge = {
vertex1: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
vertex2: { x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() },
}
const intersectionPoints = []
roof.lines
.filter((line) => (currentVectorX === 0 ? line.x1 === line.x2 : line.y1 === line.y2))
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (
intersection &&
((line.x1 <= intersection.x && line.x2 >= intersection.x && line.y1 <= intersection.y && line.y2 >= intersection.y) ||
(line.x2 <= intersection.x && line.x1 >= intersection.x && line.y2 <= intersection.y && line.y1 >= intersection.y))
) {
const size = Big(intersection.x)
.minus(currentMidX)
.abs()
.pow(2)
.plus(Big(intersection.y).minus(currentMidY).abs().pow(2))
.sqrt()
.toNumber()
intersectionPoints.push({ intersection, size })
}
})
if (intersectionPoints.length > 0) {
const intersection = intersectionPoints.sort((a, b) => a.size - b.size)[0].intersection
currentMidX = Big(intersection.x)
currentMidY = Big(intersection.y)
}
}
if (!roof.inPolygon({ x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() })) {
const checkEdge = {
vertex1: { x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() },
vertex2: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
}
const intersectionPoints = []
roof.lines
.filter((line) => (currentVectorX === 0 ? line.x1 === line.x2 : line.y1 === line.y2))
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (
intersection &&
((line.x1 <= intersection.x && line.x2 >= intersection.x && line.y1 <= intersection.y && line.y2 >= intersection.y) ||
(line.x2 <= intersection.x && line.x1 >= intersection.x && line.y2 <= intersection.y && line.y1 >= intersection.y))
) {
const size = Big(intersection.x)
.minus(oppositeMidX)
.abs()
.pow(2)
.plus(Big(intersection.y).minus(oppositeMidY).abs().pow(2))
.sqrt()
.toNumber()
intersectionPoints.push({ intersection, size })
}
})
if (intersectionPoints.length > 0) {
const intersection = intersectionPoints.sort((a, b) => a.size - b.size)[0].intersection
oppositeMidX = Big(intersection.x)
oppositeMidY = Big(intersection.y)
}
}
const vectorOppositeX = Math.sign(currentMidX.minus(oppositeMidX))
const vectorOppositeY = Math.sign(currentMidY.minus(oppositeMidY))
/** 반철처 인 경우 처리 */
if (currentLine.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
const width = Big(currentLine.attributes.width).div(2)
const degree = getDegreeByChon(currentLine.attributes.pitch)
const prevDegree = getDegreeByChon(prevLine.attributes.pitch)
const nextDegree = getDegreeByChon(nextLine.attributes.pitch)
if (vectorOppositeY === 0) {
currentMidX = currentMidX.minus(Big(width).times(vectorOppositeX))
} else {
currentMidY = currentMidY.minus(Big(width).times(vectorOppositeY))
}
/** 현재 라인에서 반철처 부분을 그린다.*/
let firstHipPoint, secondHipPoint, connectHipPoint, firstRoofPoint, secondRoofPoint
if (vectorOppositeY === 0) {
firstHipPoint = [
currentMidX.plus(Big(width).times(vectorOppositeX)).toNumber(),
currentMidY.minus(Big(width).times(prevRoofVectorY)).toNumber(),
currentMidX.toNumber(),
currentMidY.toNumber(),
]
secondHipPoint = [
currentMidX.plus(Big(width).times(vectorOppositeX)).toNumber(),
currentMidY.minus(Big(width).times(nextRoofVectorY)).toNumber(),
currentMidX.toNumber(),
currentMidY.toNumber(),
]
} else {
firstHipPoint = [
currentMidX.minus(Big(width).times(prevRoofVectorX)).toNumber(),
currentMidY.plus(Big(width).times(vectorOppositeY)).toNumber(),
currentMidX.toNumber(),
currentMidY.toNumber(),
]
secondHipPoint = [
currentMidX.minus(Big(width).times(nextRoofVectorX)).toNumber(),
currentMidY.plus(Big(width).times(vectorOppositeY)).toNumber(),
currentMidX.toNumber(),
currentMidY.toNumber(),
]
}
connectHipPoint = [firstHipPoint[0], firstHipPoint[1], secondHipPoint[0], secondHipPoint[1]]
firstRoofPoint = [currentRoof.x1, currentRoof.y1, firstHipPoint[0], firstHipPoint[1]]
secondRoofPoint = [currentRoof.x2, currentRoof.y2, secondHipPoint[0], secondHipPoint[1]]
const firstHipLine = drawHipLine(firstHipPoint, canvas, roof, textMode, null, degree, degree)
const firstRoofLine = drawHipLine(firstRoofPoint, canvas, roof, textMode, null, prevDegree, prevDegree)
const secondHipLine = drawHipLine(secondHipPoint, canvas, roof, textMode, null, degree, degree)
const secondRoofLine = drawHipLine(secondRoofPoint, canvas, roof, textMode, null, nextDegree, nextDegree)
const connectHipLine = drawRoofLine(connectHipPoint, canvas, roof, textMode)
baseHipLines.push({ x1: firstHipLine.x1, y1: firstHipLine.y1, x2: firstHipLine.x2, y2: firstHipLine.y2, line: firstHipLine })
baseHipLines.push({ x1: firstRoofLine.x1, y1: firstRoofLine.y1, x2: firstRoofLine.x2, y2: firstRoofLine.y2, line: firstRoofLine })
baseHipLines.push({ x1: secondHipLine.x1, y1: secondHipLine.y1, x2: secondHipLine.x2, y2: secondHipLine.y2, line: secondHipLine })
baseHipLines.push({ x1: secondRoofLine.x1, y1: secondRoofLine.y1, x2: secondRoofLine.x2, y2: secondRoofLine.y2, line: secondRoofLine })
baseHipLines.push({ x1: connectHipLine.x1, y1: connectHipLine.y1, x2: connectHipLine.x2, y2: connectHipLine.y2, line: connectHipLine })
} else {
const firstHipPoint = [currentRoof.x1, currentRoof.y1, currentMidX.toNumber(), currentMidY.toNumber()]
const secondHipPoint = [currentRoof.x2, currentRoof.y2, currentMidX.toNumber(), currentMidY.toNumber()]
const firstHipLine = drawHipLine(firstHipPoint, canvas, roof, textMode, null, prevDegree, prevDegree)
const secondHipLine = drawHipLine(secondHipPoint, canvas, roof, textMode, null, nextDegree, nextDegree)
baseHipLines.push({ x1: firstHipLine.x1, y1: firstHipLine.y1, x2: firstHipLine.x2, y2: firstHipLine.y2, line: firstHipLine })
baseHipLines.push({ x1: secondHipLine.x1, y1: secondHipLine.y1, x2: secondHipLine.x2, y2: secondHipLine.y2, line: secondHipLine })
}
/** 마루가 맞은편 외벽선에 닿는 경우 해당 부분까지로 한정한다. */
const ridgeEdge = {
vertex1: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
vertex2: { x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() },
}
const ridgeVectorX = Math.sign(currentMidX.minus(oppositeMidX).toNumber())
const ridgeVectorY = Math.sign(currentMidY.minus(oppositeMidY).toNumber())
roof.lines
.filter((line) => {
const lineVectorX = Math.sign(Big(line.x2).minus(Big(line.x1)).toNumber())
const lineVectorY = Math.sign(Big(line.y2).minus(Big(line.y1)).toNumber())
return (
(lineVectorX === currentVectorX && lineVectorY !== currentVectorY) || (lineVectorX !== currentVectorX && lineVectorY === currentVectorY)
)
})
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(ridgeEdge, lineEdge)
if (intersection && !intersection.isIntersectionOutside) {
const isVectorX = Math.sign(Big(currentMidX).minus(intersection.x).toNumber())
const isVectorY = Math.sign(Big(currentMidY).minus(intersection.y).toNumber())
if (isVectorX === ridgeVectorX && isVectorY === ridgeVectorY) {
oppositeMidX = Big(intersection.x)
oppositeMidY = Big(intersection.y)
}
}
})
if (baseRidgeCount < getMaxRidge(baseLines.length)) {
const ridgeLine = drawRidgeLine(
[currentMidX.toNumber(), currentMidY.toNumber(), oppositeMidX.toNumber(), oppositeMidY.toNumber()],
canvas,
roof,
textMode,
)
baseGableRidgeLines.push(ridgeLine)
baseRidgeCount++
}
}
}
})
/** 박공지붕에서 파생되는 마루를 그린다. 첫번째에서 처리 하지 못한 라인이 있는 경우 */
drawGableRidgeSecond.forEach((current) => {
const { currentBaseLine, prevBaseLine, nextBaseLine } = current
const currentLine = currentBaseLine.line
const prevLine = prevBaseLine.line
const nextLine = nextBaseLine.line
/** 이전 라인의 경사 */
const prevDegree = getDegreeByChon(prevLine.attributes.pitch)
/** 다음 라인의 경사 */
const nextDegree = getDegreeByChon(nextLine.attributes.pitch)
const currentAngle = calculateAngle(currentLine.startPoint, currentLine.endPoint)
const currentVectorX = Big(currentLine.x2).minus(currentLine.x1)
const currentVectorY = Big(currentLine.y2).minus(currentLine.y1)
const checkVectorX = Big(nextLine.x2).minus(Big(nextLine.x1))
const checkVectorY = Big(nextLine.y2).minus(Big(nextLine.y1))
const currentMidX = Big(currentLine.x1).plus(Big(currentLine.x2)).div(2)
const currentMidY = Big(currentLine.y1).plus(Big(currentLine.y2)).div(2)
const checkSize = Big(10)
/** 현재 라인의 지붕선을 찾는다. */
const intersectionRoofs = []
if (currentVectorX.eq(0)) {
const checkEdge = {
vertex1: { x: prevLine.x1, y: currentMidY.toNumber() },
vertex2: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
}
roof.lines
.filter(
(line) =>
Math.sign(line.x2 - line.x1) === Math.sign(currentVectorX.toNumber()) &&
Math.sign(line.y2 - line.y1) === Math.sign(currentVectorY.toNumber()),
)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
intersectionRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt().toNumber(),
})
}
}
})
} else {
const checkEdge = {
vertex1: { x: currentMidX.toNumber(), y: prevLine.y1 },
vertex2: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
}
roof.lines
.filter(
(line) =>
Math.sign(line.x2 - line.x1) === Math.sign(currentVectorX.toNumber()) &&
Math.sign(line.y2 - line.y1) === Math.sign(currentVectorY.toNumber()),
)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
intersectionRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt().toNumber(),
})
}
}
})
}
let currentRoof
if (intersectionRoofs.length > 0) {
currentRoof = intersectionRoofs.sort((a, b) => a.size - b.size)[0].line
}
if (currentLine.attributes.type === LINE_TYPE.WALLLINE.EAVES || currentLine.attributes.type === LINE_TYPE.WALLLINE.HIPANDGABLE) {
const currentMidEdge = {
vertex1: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
vertex2: {
x: currentMidX.plus(checkSize.times(Math.sign(checkVectorX.neg().toNumber()))).toNumber(),
y: currentMidY.plus(checkSize.times(Math.sign(checkVectorY.neg().toNumber()))).toNumber(),
},
}
let oppositeLines = []
baseLines
.filter((line) => {
if (eavesType.includes(line.attributes.type)) {
const angle = calculateAngle(line.startPoint, line.endPoint)
switch (currentAngle) {
case 90:
return angle === -90
case -90:
return angle === 90
case 0:
return angle === 180
case 180:
return angle === 0
default:
return false
}
} else {
return false
}
})
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(currentMidEdge, lineEdge)
if (intersection) {
oppositeLines.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt(),
})
}
})
if (oppositeLines.length === 0) {
return
}
const oppositeLine = oppositeLines.sort((a, b) => b.size - a.size)[0].line
let ridgePoint
if (currentVectorY.eq(0)) {
const ridgeY = Big(currentLine.y1).plus(Big(oppositeLine.y1)).div(2).round()
ridgePoint = [currentRoof.x1, ridgeY.toNumber(), currentRoof.x2, ridgeY.toNumber()]
} else {
const ridgeX = Big(currentLine.x1).plus(Big(oppositeLine.x1)).div(2).round()
ridgePoint = [ridgeX.toNumber(), currentRoof.y1, ridgeX.toNumber(), currentRoof.y2]
}
const isAlreadyRidge = baseGableRidgeLines.find(
(line) =>
(line.x1 === ridgePoint[0] && line.y1 === ridgePoint[1] && line.x2 === ridgePoint[2] && line.y2 === ridgePoint[3]) ||
(line.x1 === ridgePoint[2] && line.y1 === ridgePoint[3] && line.x2 === ridgePoint[0] && line.y2 === ridgePoint[1]),
)
if (baseRidgeCount < getMaxRidge(baseLines.length) && !isAlreadyRidge) {
const ridgeLine = drawRidgeLine(ridgePoint, canvas, roof, textMode)
baseGableRidgeLines.push(ridgeLine)
baseRidgeCount++
}
} else {
const checkPoints = {
x: currentMidX.plus(checkSize.times(Math.sign(checkVectorX.toNumber()))).toNumber(),
y: currentMidY.plus(checkSize.times(Math.sign(checkVectorY.toNumber()))).toNumber(),
}
if (!checkWallPolygon.inPolygon(checkPoints)) {
const currentMidEdge = {
vertex1: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
vertex2: {
x: currentMidX.plus(checkSize.times(Math.sign(checkVectorX.neg().toNumber()))).toNumber(),
y: currentMidY.plus(checkSize.times(Math.sign(checkVectorY.neg().toNumber()))).toNumber(),
},
}
let oppositeLines = []
baseLines
.filter((line, index) => {
let nextLine = baseLines[(index + 1) % baseLines.length]
let prevLine = baseLines[(index - 1 + baseLines.length) % baseLines.length]
if (
(gableType.includes(nextLine.attributes.type) && gableType.includes(prevLine.attributes.type)) ||
(eavesType.includes(nextLine.attributes.type) && eavesType.includes(prevLine.attributes.type))
) {
const angle = calculateAngle(line.startPoint, line.endPoint)
switch (currentAngle) {
case 90:
return angle === -90
case -90:
return angle === 90
case 0:
return angle === 180
case 180:
return angle === 0
}
}
return false
})
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(currentMidEdge, lineEdge)
if (intersection) {
oppositeLines.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt(),
})
}
})
if (oppositeLines.length === 0) {
return
}
const oppositeLine = oppositeLines.sort((a, b) => a.size - b.size)[0]
let points = []
if (eavesType.includes(oppositeLine.line.attributes.type)) {
const oppositeCurrentLine = oppositeLine.line
let oppositePrevLine, oppositeNextLine
baseLines.forEach((line, index) => {
if (line === oppositeCurrentLine) {
oppositePrevLine = baseLines[(index - 1 + baseLines.length) % baseLines.length]
oppositeNextLine = baseLines[(index + 1) % baseLines.length]
}
})
if (gableType.includes(oppositeNextLine.attributes.type) && gableType.includes(oppositePrevLine.attributes.type)) {
if (currentVectorX.eq(0)) {
const centerX = currentMidX.plus(oppositeLine.intersection.x).div(2).toNumber()
points = [centerX, currentLine.y1, centerX, currentLine.y2]
} else {
const centerY = currentMidY.plus(oppositeLine.intersection.y).div(2).toNumber()
points = [currentLine.x1, centerY, currentLine.x2, centerY]
}
}
if (eavesType.includes(oppositeNextLine.attributes.type) && eavesType.includes(oppositePrevLine.attributes.type)) {
/** 이전, 다음라인의 사잇각의 vector를 구한다. */
let prevVector = getHalfAngleVector(oppositePrevLine, oppositeCurrentLine)
let nextVector = getHalfAngleVector(oppositeCurrentLine, oppositeNextLine)
let prevHipVector = { x: Big(prevVector.x), y: Big(prevVector.y) }
let nextHipVector = { x: Big(nextVector.x), y: Big(nextVector.y) }
/** 이전 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const prevCheckPoint = {
x: Big(oppositeCurrentLine.x1).plus(Big(prevHipVector.x).times(10)),
y: Big(oppositeCurrentLine.y1).plus(Big(prevHipVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(prevCheckPoint)) {
prevHipVector = { x: Big(prevHipVector.x).neg(), y: Big(prevHipVector.y).neg() }
}
/** 다음 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const nextCheckPoint = {
x: Big(oppositeCurrentLine.x2).plus(Big(nextHipVector.x).times(10)),
y: Big(oppositeCurrentLine.y2).plus(Big(nextHipVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(nextCheckPoint)) {
nextHipVector = { x: Big(nextHipVector.x).neg(), y: Big(nextHipVector.y).neg() }
}
/** 현재 라인의 길이를 기준으로 추녀 마루의 길이를 삼각함수를 사용하여 판단한다.*/
let hipLength = Big(oppositeCurrentLine.attributes.planeSize)
.div(2)
.pow(2)
.plus(Big(oppositeCurrentLine.attributes.planeSize).div(2).pow(2))
.sqrt()
.div(10)
.round(2)
const ridgeEndPoint = {
x: Big(oppositeCurrentLine.x1).plus(hipLength.times(prevHipVector.x)).round(1),
y: Big(oppositeCurrentLine.y1).plus(hipLength.times(prevHipVector.y)).round(1),
}
const prevHypotenuse = Big(oppositePrevLine.attributes.offset).pow(2).plus(Big(oppositeCurrentLine.attributes.offset).pow(2)).sqrt()
const prevHipPoints = {
x1: Big(oppositeCurrentLine.x1).plus(prevHypotenuse.times(prevHipVector.x.neg())).round(1).toNumber(),
y1: Big(oppositeCurrentLine.y1).plus(prevHypotenuse.times(prevHipVector.y.neg())).round(1).toNumber(),
x2: ridgeEndPoint.x.toNumber(),
y2: ridgeEndPoint.y.toNumber(),
}
const nextHypotenuse = Big(oppositeNextLine.attributes.offset).pow(2).plus(Big(oppositeCurrentLine.attributes.offset).pow(2)).sqrt()
const nextHipPoints = {
x1: Big(oppositeCurrentLine.x2).plus(nextHypotenuse.times(nextHipVector.x.neg())).round(1).toNumber(),
y1: Big(oppositeCurrentLine.y2).plus(nextHypotenuse.times(nextHipVector.y.neg())).round(1).toNumber(),
x2: ridgeEndPoint.x.toNumber(),
y2: ridgeEndPoint.y.toNumber(),
}
const prevIntersection = findRoofIntersection(roof, prevHipPoints, ridgeEndPoint)
const nextIntersection = findRoofIntersection(roof, nextHipPoints, ridgeEndPoint)
if (prevIntersection) {
const prevHip = drawHipLine(
[prevIntersection.intersection.x, prevIntersection.intersection.y, ridgeEndPoint.x.toNumber(), ridgeEndPoint.y.toNumber()],
canvas,
roof,
textMode,
null,
prevDegree,
prevDegree,
)
baseHipLines.push({
x1: oppositeCurrentLine.x1,
y1: oppositeCurrentLine.y1,
x2: ridgeEndPoint.x,
y2: ridgeEndPoint.y,
line: prevHip,
})
}
if (nextIntersection) {
const nextHip = drawHipLine(
[nextIntersection.intersection.x, nextIntersection.intersection.y, ridgeEndPoint.x.toNumber(), ridgeEndPoint.y.toNumber()],
canvas,
roof,
textMode,
null,
nextDegree,
nextDegree,
)
baseHipLines.push({
x1: ridgeEndPoint.x,
y1: ridgeEndPoint.y,
x2: oppositeCurrentLine.x2,
y2: oppositeCurrentLine.y2,
line: nextHip,
})
}
const ridgeVectorX = Math.sign(currentMidX.minus(ridgeEndPoint.x).toNumber())
const ridgeVectorY = Math.sign(currentMidY.minus(ridgeEndPoint.y).toNumber())
const ridgePoints = {
x1: currentMidX.plus(Big(currentLine.attributes.offset).times(ridgeVectorX)).toNumber(),
y1: currentMidY.plus(Big(currentLine.attributes.offset).times(ridgeVectorY)).toNumber(),
x2: ridgeEndPoint.x.toNumber(),
y2: ridgeEndPoint.y.toNumber(),
}
const ridgeIntersection = findRoofIntersection(roof, ridgePoints, {
x: Big(ridgePoints.x2),
y: Big(ridgePoints.y2),
})
if (ridgeIntersection) {
points = [ridgeIntersection.intersection.x, ridgeIntersection.intersection.y, ridgeEndPoint.x, ridgeEndPoint.y]
}
}
} else {
if (currentVectorX.eq(0)) {
points = [oppositeLine.intersection.x, currentLine.y1, oppositeLine.intersection.x, currentLine.y2]
} else {
points = [currentLine.x1, oppositeLine.intersection.y, currentLine.x2, oppositeLine.intersection.y]
}
}
const isAlreadyRidge = baseGableRidgeLines.find(
(line) =>
(line.x1 === points[0] && line.y1 === points[1] && line.x2 === points[2] && line.y2 === points[3]) ||
(line.x1 === points[2] && line.y1 === points[3] && line.x2 === points[0] && line.y2 === points[1]),
)
if (baseRidgeCount < getMaxRidge(baseLines.length) && !isAlreadyRidge) {
const ridgeLine = drawRidgeLine(points, canvas, roof, textMode)
baseGableRidgeLines.push(ridgeLine)
baseRidgeCount++
}
} else {
const oppositeLines = baseLines.filter((line) => {
const lineAngle = calculateAngle(line.startPoint, line.endPoint)
switch (currentAngle) {
case 90:
return lineAngle === -90
case -90:
return lineAngle === 90
case 0:
return lineAngle === 180
case 180:
return lineAngle === 0
}
})
if (oppositeLines.length > 0 && baseRidgeCount < getMaxRidge(baseLines.length)) {
let ridgePoints = []
const oppositeLine = oppositeLines.sort((a, b) => {
let diffCurrentA, diffCurrentB
if (Math.sign(currentVectorX) === 0) {
diffCurrentA = currentMidY.minus(a.y1).abs()
diffCurrentB = currentMidY.minus(b.y1).abs()
} else {
diffCurrentA = currentMidX.minus(a.x1).abs()
diffCurrentB = currentMidX.minus(b.x1).abs()
}
return diffCurrentA.minus(diffCurrentB).toNumber()
})[0]
const prevOffset = prevLine.attributes.offset
const nextOffset = nextLine.attributes.offset
if (Math.sign(currentVectorX) === 0) {
const prevY = Big(currentLine.y1)
.plus(Big(Math.sign(currentVectorY)).neg().times(prevOffset))
.toNumber()
const nextY = Big(currentLine.y2)
.plus(Big(Math.sign(currentVectorY)).times(nextOffset))
.toNumber()
const midX = Big(currentLine.x1).plus(oppositeLine.x1).div(2).toNumber()
ridgePoints = [midX, prevY, midX, nextY]
} else {
const prevX = Big(currentLine.x1)
.plus(Big(Math.sign(currentVectorX)).neg().times(prevOffset))
.toNumber()
const nextX = Big(currentLine.x2)
.plus(Big(Math.sign(currentVectorX)).times(nextOffset))
.toNumber()
const midY = Big(currentLine.y1).plus(oppositeLine.y1).div(2).toNumber()
ridgePoints = [prevX, midY, nextX, midY]
}
const isAlreadyRidge = baseGableRidgeLines.find(
(line) =>
(line.x1 === ridgePoints[0] && line.y1 === ridgePoints[1] && line.x2 === ridgePoints[2] && line.y2 === ridgePoints[3]) ||
(line.x1 === ridgePoints[2] && line.y1 === ridgePoints[3] && line.x2 === ridgePoints[0] && line.y2 === ridgePoints[1]),
)
if (!isAlreadyRidge) {
const ridge = drawRidgeLine(ridgePoints, canvas, roof, textMode)
baseGableRidgeLines.push(ridge)
baseRidgeCount++
}
}
}
}
})
const uniqueRidgeLines = []
/** 중복제거 */
baseGableRidgeLines.forEach((currentLine, index) => {
if (index === 0) {
uniqueRidgeLines.push(currentLine)
} else {
const duplicateLines = uniqueRidgeLines.filter(
(line) =>
(currentLine.x1 === line.x1 && currentLine.y1 === line.y1 && currentLine.x2 === line.x2 && currentLine.y2 === line.y2) ||
(currentLine.x1 === line.x2 && currentLine.y1 === line.y2 && currentLine.x2 === line.x1 && currentLine.y2 === line.y1),
)
if (duplicateLines.length === 0) {
uniqueRidgeLines.push(currentLine)
}
}
})
baseGableRidgeLines = uniqueRidgeLines
/** 박공지붕 polygon 생성 */
drawGablePolygonFirst.forEach((current) => {
const { currentBaseLine, prevBaseLine, nextBaseLine } = current
const currentLine = currentBaseLine.line
const prevLine = prevBaseLine.line
const nextLine = nextBaseLine.line
const currentVectorX = Math.sign(currentLine.x2 - currentLine.x1)
const currentVectorY = Math.sign(currentLine.y2 - currentLine.y1)
const nextVectorX = Math.sign(nextLine.x1 - nextLine.x2)
const nextVectorY = Math.sign(nextLine.y1 - nextLine.y2)
const currentDegree = getDegreeByChon(currentLine.attributes.pitch)
const currentMidX = Big(currentLine.x1).plus(Big(currentLine.x2)).div(2)
const currentMidY = Big(currentLine.y1).plus(Big(currentLine.y2)).div(2)
const intersectionRoofs = []
if (currentVectorX === 0) {
const checkEdge = {
vertex1: { x: prevLine.x1, y: currentMidY.toNumber() },
vertex2: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === currentVectorX && Math.sign(line.y2 - line.y1) === currentVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
intersectionRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt(),
})
}
}
})
} else {
const checkEdge = {
vertex1: { x: currentMidX.toNumber(), y: prevLine.y1 },
vertex2: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === currentVectorX && Math.sign(line.y2 - line.y1) === currentVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
intersectionRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt(),
})
}
}
})
}
let currentRoof, prevRoof, nextRoof
if (intersectionRoofs.length > 0) {
currentRoof = intersectionRoofs.sort((a, b) => a.size - b.size)[0].line
}
if (currentRoof) {
prevRoof = roof.lines.find((line) => line.x2 === currentRoof.x1 && line.y2 === currentRoof.y1)
nextRoof = roof.lines.find((line) => line.x1 === currentRoof.x2 && line.y1 === currentRoof.y2)
const prevRoofEdge = {
vertex1: { x: prevRoof.x2, y: prevRoof.y2 },
vertex2: { x: prevRoof.x1, y: prevRoof.y1 },
}
const nextRoofEdge = {
vertex1: { x: nextRoof.x1, y: nextRoof.y1 },
vertex2: { x: nextRoof.x2, y: nextRoof.y2 },
}
let polygonPoints = [
{ x: currentRoof.x1, y: currentRoof.y1 },
{ x: currentRoof.x2, y: currentRoof.y2 },
]
const prevHipLines = []
const nextHipLine = []
let prevLineRidge, nextLineRidge
baseHipLines.forEach((current) => {
const { line } = current
if (
(Math.abs(line.x1 - currentRoof.x1) <= 1 &&
Math.abs(line.y1 - currentRoof.y1) <= 1 &&
isPointOnLine(prevRoof, { x: line.x2, y: line.y2 })) ||
(Math.abs(line.x2 - currentRoof.x1) <= 1 &&
Math.abs(line.y2 - currentRoof.y1) <= 1 &&
isPointOnLine(prevRoof, {
x: line.x1,
y: line.y1,
}))
) {
prevHipLines.push(current)
}
if (
(Math.abs(line.x1 - currentRoof.x2) <= 1 &&
Math.abs(line.y1 - currentRoof.y2) <= 1 &&
isPointOnLine(nextRoof, { x: line.x2, y: line.y2 })) ||
(Math.abs(line.x2 - currentRoof.x2) <= 1 &&
Math.abs(line.y2 - currentRoof.y2) <= 1 &&
isPointOnLine(nextRoof, {
x: line.x1,
y: line.y1,
}))
) {
nextHipLine.push(current)
}
})
prevHipLines.forEach((current) => {
if (prevLine.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
let findPoint
if (Math.abs(current.x1 - currentRoof.x1) <= 1 && Math.abs(current.y1 - currentRoof.y1) <= 1) {
findPoint = { x: current.x2, y: current.y2 }
} else {
findPoint = { x: current.x1, y: current.y1 }
}
baseHipLines
.filter(
(line) =>
((Math.abs(line.x1 - findPoint.x) <= 1 && Math.abs(line.y1 - findPoint.y) <= 1) ||
(Math.abs(line.x2 - findPoint.x) <= 1 && Math.abs(line.y2 - findPoint.y) <= 1)) &&
line.x1 !== line.x2 &&
line.y1 !== line.y2,
)
.forEach((line) => {
polygonPoints.push({ x: line.x1, y: line.y1 }, { x: line.x2, y: line.y2 })
let ridgePoint
if (Math.abs(line.x1 - findPoint.x) <= 1 && Math.abs(line.y1 - findPoint.y) <= 1) {
ridgePoint = { x: line.x2, y: line.y2 }
} else {
ridgePoint = { x: line.x1, y: line.y1 }
}
prevLineRidge = baseGableRidgeLines.find(
(ridge) =>
(Math.abs(ridge.x1 - ridgePoint.x) <= 1 && Math.abs(ridge.y1 - ridgePoint.y) <= 1) ||
(Math.abs(ridge.x2 - ridgePoint.x) <= 1 && Math.abs(ridge.y2 - ridgePoint.y) <= 1),
)
})
} else {
let ridgePoint
if (Math.abs(current.x1 - currentRoof.x1) <= 1 && Math.abs(current.y1 - currentRoof.y1) <= 1) {
ridgePoint = { x: current.x2, y: current.y2 }
} else {
ridgePoint = { x: current.x1, y: current.y1 }
}
prevLineRidge = baseGableRidgeLines.find((ridge) => {
return (
(Math.abs(ridge.x1 - ridgePoint.x) <= 1 && Math.abs(ridge.y1 - ridgePoint.y) <= 1) ||
(Math.abs(ridge.x2 - ridgePoint.x) <= 1 && Math.abs(ridge.y2 - ridgePoint.y) <= 1)
)
})
}
})
nextHipLine.forEach((current) => {
if (nextLine.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
let findPoint
if (Math.abs(current.x1 - currentRoof.x2) <= 1 && Math.abs(current.y1 - currentRoof.y2) <= 1) {
findPoint = { x: current.x2, y: current.y2 }
} else {
findPoint = { x: current.x1, y: current.y1 }
}
baseHipLines
.filter(
(line) =>
((Math.abs(line.x1 - findPoint.x) <= 1 && Math.abs(line.y1 - findPoint.y) <= 1) ||
(Math.abs(line.x2 - findPoint.x) <= 1 && Math.abs(line.y2 - findPoint.y) <= 1)) &&
line.x1 !== line.x2 &&
line.y1 !== line.y2,
)
.forEach((line) => {
polygonPoints.push({ x: line.x1, y: line.y1 }, { x: line.x2, y: line.y2 })
let ridgePoint
if (Math.abs(line.x1 - findPoint.x) <= 1 && Math.abs(line.y1 - findPoint.y) <= 1) {
ridgePoint = { x: line.x2, y: line.y2 }
} else {
ridgePoint = { x: line.x1, y: line.y1 }
}
nextLineRidge = baseGableRidgeLines.find(
(ridge) =>
(Math.abs(ridge.x1 - ridgePoint.x) <= 1 && Math.abs(ridge.y1 - ridgePoint.y) <= 1) ||
(Math.abs(ridge.x2 - ridgePoint.x) <= 1 && Math.abs(ridge.y2 - ridgePoint.y) <= 1),
)
})
} else {
let ridgePoint
if (Math.abs(current.x1 - currentRoof.x2) <= 1 && Math.abs(current.y1 - currentRoof.y2) <= 1) {
ridgePoint = { x: current.x2, y: current.y2 }
} else {
ridgePoint = { x: current.x1, y: current.y1 }
}
nextLineRidge = baseGableRidgeLines.find(
(ridge) =>
(Math.abs(ridge.x1 - ridgePoint.x) <= 1 && Math.abs(ridge.y1 - ridgePoint.y) <= 1) ||
(Math.abs(ridge.x2 - ridgePoint.x) <= 1 && Math.abs(ridge.y2 - ridgePoint.y) <= 1),
)
}
})
if (!prevLineRidge) {
if (prevLine.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
} else {
const isRidgePoints = []
baseGableRidgeLines.forEach((ridge) => {
const ridgeEdge = { vertex1: { x: ridge.x1, y: ridge.y1 }, vertex2: { x: ridge.x2, y: ridge.y2 } }
const intersection = edgesIntersection(prevRoofEdge, ridgeEdge)
if (
intersection &&
((ridge.x1 <= intersection.x && intersection.x <= ridge.x2 && ridge.y1 <= intersection.y && intersection.y <= ridge.y2) ||
(ridge.x2 <= intersection.x && intersection.x <= ridge.x1 && ridge.y2 <= intersection.y && intersection.y <= ridge.y1))
) {
const size = Big(intersection.x)
.minus(Big(currentRoof.x1))
.abs()
.pow(2)
.plus(Big(intersection.y).minus(Big(currentRoof.y1)).abs().pow(2))
.sqrt()
isRidgePoints.push({ intersection, ridge, size })
}
})
if (isRidgePoints.length > 0) {
const sortedRidgePoints = isRidgePoints.sort((a, b) => a.size - b.size)
prevLineRidge = sortedRidgePoints[0].ridge
}
}
}
if (!nextLineRidge) {
if (nextLine.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
} else {
const isRidgePoints = []
baseGableRidgeLines.forEach((ridge) => {
const ridgeEdge = { vertex1: { x: ridge.x1, y: ridge.y1 }, vertex2: { x: ridge.x2, y: ridge.y2 } }
const intersection = edgesIntersection(nextRoofEdge, ridgeEdge)
if (
intersection &&
((ridge.x1 <= intersection.x && intersection.x <= ridge.x2 && ridge.y1 <= intersection.y && intersection.y <= ridge.y2) ||
(ridge.x2 <= intersection.x && intersection.x <= ridge.x1 && ridge.y2 <= intersection.y && intersection.y <= ridge.y1))
) {
const size = Big(intersection.x)
.minus(Big(currentRoof.x2))
.abs()
.pow(2)
.plus(Big(intersection.y).minus(Big(currentRoof.y2)).abs().pow(2))
.sqrt()
isRidgePoints.push({ intersection, ridge, size })
}
})
if (isRidgePoints.length > 0) {
const sortedRidgePoints = isRidgePoints.sort((a, b) => a.size - b.size)
nextLineRidge = sortedRidgePoints[0].ridge
}
}
}
const ridgeLine = prevLineRidge === undefined ? nextLineRidge : prevLineRidge
if (prevLineRidge !== undefined && nextLineRidge !== undefined) {
/** 4각*/
if (prevLineRidge === nextLineRidge) {
polygonPoints.push({ x: ridgeLine.x1, y: ridgeLine.y1 }, { x: ridgeLine.x2, y: ridgeLine.y2 })
}
/** 6각이상*/
let isOverLap =
currentVectorX === 0
? (prevLineRidge.y1 <= nextLineRidge.y1 && prevLineRidge.y2 >= nextLineRidge.y1) ||
(prevLineRidge.y1 >= nextLineRidge.y1 && prevLineRidge.y2 <= nextLineRidge.y1) ||
(prevLineRidge.y1 <= nextLineRidge.y2 && prevLineRidge.y2 >= nextLineRidge.y2) ||
(prevLineRidge.y1 >= nextLineRidge.y2 && prevLineRidge.y2 <= nextLineRidge.y2)
: (prevLineRidge.x1 <= nextLineRidge.x1 && prevLineRidge.x2 >= nextLineRidge.x1) ||
(prevLineRidge.x1 >= nextLineRidge.x1 && prevLineRidge.x2 <= nextLineRidge.x1) ||
(prevLineRidge.x1 <= nextLineRidge.x2 && prevLineRidge.x2 >= nextLineRidge.x2) ||
(prevLineRidge.x1 >= nextLineRidge.x2 && prevLineRidge.x2 <= nextLineRidge.x2)
if (isOverLap) {
const prevDistance = currentVectorX === 0 ? Math.abs(prevLineRidge.x1 - currentRoof.x1) : Math.abs(prevLineRidge.y1 - currentRoof.y1)
const nextDistance = currentVectorX === 0 ? Math.abs(nextLineRidge.x1 - currentRoof.x1) : Math.abs(nextLineRidge.y1 - currentRoof.y1)
/** 현재 지붕 라인과 먼 라인의 포인트를 온전히 사용한다. */
if (Math.abs(prevDistance - nextDistance) < 1) {
const minX = Math.min(currentRoof.x1, currentRoof.x2, currentLine.x1, currentLine.x2)
const maxX = Math.max(currentRoof.x1, currentRoof.x2, currentLine.x1, currentLine.x2)
const minY = Math.min(currentRoof.y1, currentRoof.y2, currentLine.y1, currentLine.y2)
const maxY = Math.max(currentRoof.y1, currentRoof.y2, currentLine.y1, currentLine.y2)
if (currentVectorX === 0) {
polygonPoints.push({ x: prevLineRidge.x1, y: minY }, { x: prevLineRidge.x1, y: maxY })
} else {
polygonPoints.push({ x: minX, y: prevLineRidge.y1 }, { x: maxX, y: prevLineRidge.y1 })
}
} else if (prevDistance < nextDistance) {
polygonPoints.push({ x: nextLineRidge.x1, y: nextLineRidge.y1 }, { x: nextLineRidge.x2, y: nextLineRidge.y2 })
/** 이전라인과 교차한 마루의 포인트*/
let prevRidgePoint1
if (prevLine.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
prevRidgePoint1 = polygonPoints.find(
(point) =>
(point.x === prevLineRidge.x1 && point.y === prevLineRidge.y1) || (point.x === prevLineRidge.x2 && point.y === prevLineRidge.y2),
)
} else {
prevRidgePoint1 =
currentVectorX === 0
? currentRoof.y1 === prevLineRidge.y1
? { x: prevLineRidge.x1, y: prevLineRidge.y1 }
: { x: prevLineRidge.x2, y: prevLineRidge.y2 }
: currentRoof.x1 === prevLineRidge.x1
? { x: prevLineRidge.x1, y: prevLineRidge.y1 }
: { x: prevLineRidge.x2, y: prevLineRidge.y2 }
polygonPoints.push(prevRidgePoint1)
}
/** 다음 라인과 교차한 마루의 포인트 중 라인과 접하지 않은 포인트*/
let checkRidgePoint
if (nextLine.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
const ridgePoint1 = polygonPoints.filter((point) => point.x === nextLineRidge.x1 && point.y === nextLineRidge.y1)
checkRidgePoint = ridgePoint1.length > 0 ? { x: nextLineRidge.x2, y: nextLineRidge.y2 } : { x: nextLineRidge.x1, y: nextLineRidge.y1 }
} else {
checkRidgePoint =
currentVectorX === 0
? currentRoof.y2 !== nextLineRidge.y1
? { x: nextLineRidge.x1, y: nextLineRidge.y1 }
: { x: nextLineRidge.x2, y: nextLineRidge.y2 }
: currentRoof.x2 !== nextLineRidge.x1
? { x: nextLineRidge.x1, y: nextLineRidge.y1 }
: { x: nextLineRidge.x2, y: nextLineRidge.y2 }
}
const prevRidgePoint2 =
currentVectorX === 0 ? { x: prevRidgePoint1.x, y: checkRidgePoint.y } : { x: checkRidgePoint.x, y: prevRidgePoint1.y }
polygonPoints.push(prevRidgePoint2)
} else {
polygonPoints.push({ x: prevLineRidge.x1, y: prevLineRidge.y1 }, { x: prevLineRidge.x2, y: prevLineRidge.y2 })
/** 다음라인과 교차한 마루의 포인트*/
let nextRidgePoint1
if (nextLine.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
nextRidgePoint1 = polygonPoints.find(
(point) =>
(point.x === nextLineRidge.x1 && point.y === nextLineRidge.y1) || (point.x === nextLineRidge.x2 && point.y === nextLineRidge.y2),
)
} else {
nextRidgePoint1 =
currentVectorX === 0
? currentRoof.y2 === nextLineRidge.y1
? { x: nextLineRidge.x1, y: nextLineRidge.y1 }
: { x: nextLineRidge.x2, y: nextLineRidge.y2 }
: currentRoof.x2 === nextLineRidge.x1
? { x: nextLineRidge.x1, y: nextLineRidge.y1 }
: { x: nextLineRidge.x2, y: nextLineRidge.y2 }
polygonPoints.push(nextRidgePoint1)
}
/** 이전 라인과 교차한 마루의 포인트 중 라인과 접하지 않은 포인트*/
let checkRidgePoint
if (prevLine.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
const ridgePoint1 = polygonPoints.filter((point) => point.x === prevLineRidge.x1 && point.y === prevLineRidge.y1)
checkRidgePoint = ridgePoint1.length > 0 ? { x: prevLineRidge.x2, y: prevLineRidge.y2 } : { x: prevLineRidge.x1, y: prevLineRidge.y1 }
} else {
checkRidgePoint =
currentVectorX === 0
? currentRoof.y1 !== prevLineRidge.y1
? { x: prevLineRidge.x1, y: prevLineRidge.y1 }
: { x: prevLineRidge.x2, y: prevLineRidge.y2 }
: currentRoof.x1 !== prevLineRidge.x1
? { x: prevLineRidge.x1, y: prevLineRidge.y1 }
: { x: prevLineRidge.x2, y: prevLineRidge.y2 }
}
const nextRidgePoint2 =
currentVectorX === 0 ? { x: nextRidgePoint1.x, y: checkRidgePoint.y } : { x: checkRidgePoint.x, y: nextRidgePoint1.y }
polygonPoints.push(nextRidgePoint2)
}
} else {
/** 마루가 겹치지 않을때 */
const otherRidgeLines = []
baseGableRidgeLines
.filter((ridge) => ridge !== prevLineRidge && ridge !== nextLineRidge)
.filter((ridge) => (currentVectorX === 0 ? ridge.x1 === ridge.x2 : ridge.y1 === ridge.y2))
.filter((ridge) =>
currentVectorX === 0 ? nextVectorX === Math.sign(nextLine.x1 - ridge.x1) : nextVectorY === Math.sign(nextLine.y1 - ridge.y1),
)
.forEach((ridge) => {
const size = currentVectorX === 0 ? Math.abs(nextLine.x1 - ridge.x1) : Math.abs(nextLine.y1 - ridge.y1)
otherRidgeLines.push({ ridge, size })
})
if (otherRidgeLines.length > 0) {
const otherRidge = otherRidgeLines.sort((a, b) => a.size - b.size)[0].ridge
/**
* otherRidge이 prevRidgeLine, nextRidgeLine 과 currentLine의 사이에 있는지 확인해서 분할하여 작업
* 지붕의 덮힘이 다르기 때문
*/
const isInside =
currentVectorX === 0
? Math.abs(currentLine.x1 - otherRidge.x1) < Math.abs(currentLine.x1 - prevLineRidge.x1) &&
Math.abs(currentLine.x1 - otherRidge.x1) < Math.abs(currentLine.x1 - nextLineRidge.x1)
: Math.abs(currentLine.y1 - otherRidge.y1) < Math.abs(currentLine.y1 - prevLineRidge.y1) &&
Math.abs(currentLine.y1 - otherRidge.y1) < Math.abs(currentLine.y1 - nextLineRidge.y1)
if (isInside) {
polygonPoints.push(
{ x: prevLineRidge.x1, y: prevLineRidge.y1 },
{ x: prevLineRidge.x2, y: prevLineRidge.y2 },
{ x: nextLineRidge.x1, y: nextLineRidge.y1 },
{ x: nextLineRidge.x2, y: nextLineRidge.y2 },
)
let ridgeAllPoints = [
{ x: prevLineRidge.x1, y: prevLineRidge.y1 },
{ x: prevLineRidge.x2, y: prevLineRidge.y2 },
{ x: nextLineRidge.x1, y: nextLineRidge.y1 },
{ x: nextLineRidge.x2, y: nextLineRidge.y2 },
]
let ridgePoints = []
ridgeAllPoints.forEach((point) => {
let isOnLine = false
roof.lines.forEach((line) => {
if (isPointOnLine({ x1: line.x1, y1: line.y1, x2: line.x2, y2: line.y2 }, point)) {
isOnLine = true
}
})
if (!isOnLine) {
ridgePoints.push(point)
}
})
if (ridgePoints.length === 2) {
if (Math.sign(otherRidge.x1 - otherRidge.x2) === 0) {
polygonPoints.push(
{ x: otherRidge.x1, y: ridgePoints[0].y },
{
x: otherRidge.x1,
y: ridgePoints[1].y,
},
)
} else {
polygonPoints.push(
{ x: ridgePoints[0].x, y: otherRidge.y1 },
{
x: ridgePoints[1].x,
y: otherRidge.y1,
},
)
}
}
} else {
polygonPoints.push({ x: otherRidge.x1, y: otherRidge.y1 }, { x: otherRidge.x2, y: otherRidge.y2 })
let ridgePoints = [
{ x: prevLineRidge.x1, y: prevLineRidge.y1 },
{ x: prevLineRidge.x2, y: prevLineRidge.y2 },
{ x: nextLineRidge.x1, y: nextLineRidge.y1 },
{ x: nextLineRidge.x2, y: nextLineRidge.y2 },
]
ridgePoints.forEach((point) => {
let isOnLine = false
roof.lines.forEach((line) => {
if (isPointOnLine({ x1: line.x1, y1: line.y1, x2: line.x2, y2: line.y2 }, point)) {
isOnLine = true
}
})
if (isOnLine) {
polygonPoints.push(point)
}
})
if (Math.sign(otherRidge.x1 - otherRidge.x2) === 0) {
const prevY =
(prevLineRidge.y1 <= otherRidge.y1 && otherRidge.y1 <= prevLineRidge.y2) ||
(prevLineRidge.y1 >= otherRidge.y1 && otherRidge.y1 >= prevLineRidge.y2)
? otherRidge.y1
: otherRidge.y2
const nextY =
(nextLineRidge.y1 <= otherRidge.y1 && otherRidge.y1 <= nextLineRidge.y2) ||
(nextLineRidge.y1 >= otherRidge.y1 && otherRidge.y1 >= nextLineRidge.y2)
? otherRidge.y1
: otherRidge.y2
polygonPoints.push({ x: prevLineRidge.x1, y: prevY }, { x: nextLineRidge.x1, y: nextY })
} else {
const prevX =
(prevLineRidge.x1 <= otherRidge.x1 && otherRidge.x1 <= prevLineRidge.x2) ||
(prevLineRidge.x1 >= otherRidge.x1 && otherRidge.x1 >= prevLineRidge.x2)
? otherRidge.x1
: otherRidge.x2
const nextX =
(nextLineRidge.x1 <= otherRidge.x1 && otherRidge.x1 <= nextLineRidge.x2) ||
(nextLineRidge.x1 >= otherRidge.x1 && otherRidge.x1 >= nextLineRidge.x2)
? otherRidge.x1
: otherRidge.x2
polygonPoints.push({ x: prevX, y: prevLineRidge.y1 }, { x: nextX, y: nextLineRidge.y1 })
}
}
}
}
}
/** 중복되는 포인트 제거 */
const uniquePoints = []
polygonPoints.forEach((point) => {
const isAlready = uniquePoints.find((uniquePoint) => uniquePoint.x === point.x && uniquePoint.y === point.y)
if (!isAlready) {
uniquePoints.push(point)
}
})
polygonPoints = getSortedPoint(uniquePoints, baseHipLines)
polygonPoints.forEach((currentPoint, index) => {
const nextPoint = polygonPoints[(index + 1) % polygonPoints.length]
const points = [currentPoint.x, currentPoint.y, nextPoint.x, nextPoint.y]
const isParallel = ridgeLine.x1 === ridgeLine.x2 ? currentPoint.x === nextPoint.x : currentPoint.y === nextPoint.y
const ridgeLines = baseGableRidgeLines.filter(
(line) =>
(line.x1 === points[0] && line.y1 === points[1] && line.x2 === points[2] && line.y2 === points[3]) ||
(line.x1 === points[2] && line.y1 === points[3] && line.x2 === points[0] && line.y2 === points[1]),
)
const hipLine = baseHipLines.filter(
(line) =>
(line.x1 === points[0] && line.y1 === points[1] && line.x2 === points[2] && line.y2 === points[3]) ||
(line.x1 === points[2] && line.y1 === points[3] && line.x2 === points[0] && line.y2 === points[1]),
)
/** 이미 존재하는 라인이면 넘긴다.*/
if (ridgeLines.length > 0 || hipLine.length > 0) {
return
}
let line
if (isParallel) {
line = drawRoofLine(points, canvas, roof, textMode)
baseGableLines.push(line)
} else {
line = drawHipLine(points, canvas, roof, textMode, null, currentDegree, currentDegree)
baseHipLines.push({ x1: line.x1, y1: line.y1, x2: line.x2, y2: line.y2, line })
}
})
}
})
drawGablePolygonSecond.forEach((current) => {
const { currentBaseLine, prevBaseLine, nextBaseLine } = current
const currentLine = currentBaseLine.line
const prevLine = prevBaseLine.line
const nextLine = nextBaseLine.line
let { x1, x2, y1, y2 } = currentBaseLine
const currentVectorX = Math.sign(currentLine.x2 - currentLine.x1)
const currentVectorY = Math.sign(currentLine.y2 - currentLine.y1)
const currentDegree = getDegreeByChon(currentLine.attributes.pitch)
const prevAngle = calculateAngle(prevLine.startPoint, prevLine.endPoint)
const nextAngle = calculateAngle(nextLine.startPoint, nextLine.endPoint)
const currentMidX = Big(currentLine.x1).plus(Big(currentLine.x2)).div(2)
const currentMidY = Big(currentLine.y1).plus(Big(currentLine.y2)).div(2)
const intersectionRoofs = []
if (currentVectorX === 0) {
const checkEdge = {
vertex1: { x: prevLine.x1, y: currentMidY.toNumber() },
vertex2: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === currentVectorX && Math.sign(line.y2 - line.y1) === currentVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
intersectionRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt(),
})
}
}
})
} else {
const checkEdge = {
vertex1: { x: currentMidX.toNumber(), y: prevLine.y1 },
vertex2: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === currentVectorX && Math.sign(line.y2 - line.y1) === currentVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
intersectionRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt(),
})
}
}
})
}
let currentRoof, prevRoof, nextRoof
if (intersectionRoofs.length > 0) {
currentRoof = intersectionRoofs.sort((a, b) => a.size - b.size)[0].line
prevRoof = roof.lines.find((line) => line.x2 === currentRoof.x1 && line.y2 === currentRoof.y1)
nextRoof = roof.lines.find((line) => line.x1 === currentRoof.x2 && line.y1 === currentRoof.y2)
}
let polygonPoints = []
if (Big(prevAngle).minus(Big(nextAngle)).abs().eq(180)) {
const xVector = Big(nextLine.x2).minus(Big(nextLine.x1))
const yVector = Big(nextLine.y2).minus(Big(nextLine.y1))
const currentMidX = Big(currentLine.x1).plus(Big(currentLine.x2)).div(2)
const currentMidY = Big(currentLine.y1).plus(Big(currentLine.y2)).div(2)
const checkPoints = {
x: currentMidX.plus(Big(10).times(Math.sign(xVector.toNumber()))).toNumber(),
y: currentMidY.plus(Big(10).times(Math.sign(yVector.toNumber()))).toNumber(),
}
if (checkWallPolygon.inPolygon(checkPoints)) {
const currentRidge = baseGableRidgeLines.find((line) =>
currentVectorX === 0
? (line.y1 === y1 && line.y2 === y2) || (line.y1 === y2 && line.y2 === y1)
: (line.x1 === x1 && line.x2 === x2) || (line.x1 === x2 && line.x2 === x1),
)
if (currentRidge) {
const ridgeVectorX = Math.sign(currentRidge.x1 - currentRidge.x2)
const ridgeVectorY = Math.sign(currentRidge.y1 - currentRidge.y2)
let checkEdge
if (currentVectorX === 0) {
checkEdge = {
vertex1: { x: currentRidge.x1, y: currentRidge.y1 },
vertex2: { x: currentLine.x1, y: currentRidge.y1 },
}
} else {
checkEdge = {
vertex1: { x: currentRidge.x1, y: currentRidge.y1 },
vertex2: { x: currentRidge.x1, y: currentLine.y1 },
}
}
const isRoofLines = []
roof.lines
.filter((line) => (currentVectorX === 0 ? line.x1 === line.x2 : line.y1 === line.y2))
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const is = edgesIntersection(checkEdge, lineEdge)
if (is) {
const checkVectorX = Math.sign(checkEdge.vertex1.x - checkEdge.vertex2.x)
const checkVectorY = Math.sign(checkEdge.vertex1.y - checkEdge.vertex2.y)
const isVectorX = Math.sign(checkEdge.vertex1.x - is.x)
const isVectorY = Math.sign(checkEdge.vertex1.y - is.y)
if ((ridgeVectorX === 0 && checkVectorX === isVectorX) || (ridgeVectorY === 0 && checkVectorY === isVectorY)) {
const size = ridgeVectorX === 0 ? Math.abs(checkEdge.vertex1.x - is.x) : Math.abs(checkEdge.vertex1.y - is.y)
isRoofLines.push({ line, size })
}
}
})
isRoofLines.sort((a, b) => a.size - b.size)
const roofLine = isRoofLines[0].line
polygonPoints.push({ x: currentRidge.x1, y: currentRidge.y1 }, { x: currentRidge.x2, y: currentRidge.y2 })
if (ridgeVectorX === 0) {
polygonPoints.push({ x: roofLine.x1, y: currentRidge.y1 }, { x: roofLine.x1, y: currentRidge.y2 })
} else {
polygonPoints.push({ x: currentRidge.x1, y: roofLine.y1 }, { x: currentRidge.x2, y: roofLine.y1 })
}
}
} else {
const currentRidge = baseGableRidgeLines.find((line) =>
currentVectorX === 0
? (Math.abs(line.y1 - currentRoof.y1) < 1 && Math.abs(line.y2 - currentRoof.y2) < 1) ||
(Math.abs(line.y1 - currentRoof.y2) < 1 && Math.abs(line.y2 - currentRoof.y1) < 1)
: (Math.abs(line.x1 - currentRoof.x1) < 1 && Math.abs(line.x2 - currentRoof.x2) < 1) ||
(Math.abs(line.x1 - currentRoof.x2) < 1 && Math.abs(line.x2 - currentRoof.x1) < 1),
)
if (currentRidge) {
if (currentVectorX === 0) {
polygonPoints.push({ x: currentRoof.x1, y: currentLine.y1 }, { x: currentRoof.x2, y: currentLine.y2 })
polygonPoints.push({ x: currentRidge.x1, y: currentLine.y1 }, { x: currentRidge.x1, y: currentLine.y2 })
} else {
polygonPoints.push({ x: currentLine.x1, y: currentRoof.y1 }, { x: currentLine.x2, y: currentRoof.y2 })
polygonPoints.push({ x: currentLine.x1, y: currentRidge.y1 }, { x: currentLine.x2, y: currentRidge.y1 })
}
}
}
} else {
const prevEdge = { vertex1: { x: prevRoof.x2, y: prevRoof.y2 }, vertex2: { x: prevRoof.x1, y: prevRoof.y1 } }
const prevVectorX = Math.sign(prevRoof.x1 - prevRoof.x2)
const prevVectorY = Math.sign(prevRoof.y1 - prevRoof.y2)
let prevRidge, nextRidge
if (prevLine.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
const hipLines = []
baseHipLines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const is = edgesIntersection(prevEdge, lineEdge)
if (is) {
const size = Big(is.x).minus(prevRoof.x2).abs().pow(2).plus(Big(is.y).minus(prevRoof.y2).abs().pow(2)).sqrt().toNumber()
hipLines.push({ line, is, size })
}
})
if (hipLines.length > 0) {
hipLines.sort((a, b) => a.size - b.size)
const hipLine = hipLines[0]
polygonPoints.push({ x: hipLine.is.x, y: hipLine.is.y })
const ridgePoint =
hipLine.is.x === hipLine.line.x1 && hipLine.is.y === hipLine.line.y1
? { x: hipLine.line.x2, y: hipLine.line.y2 }
: { x: hipLine.line.x1, y: hipLine.line.y1 }
prevRidge = baseGableRidgeLines.find(
(line) => (line.x1 === ridgePoint.x && line.y1 === ridgePoint.y) || (line.x2 === ridgePoint.x && line.y2 === ridgePoint.y),
)
}
} else {
const prevRidges = []
baseGableRidgeLines.forEach((ridge) => {
const ridgeEdge = { vertex1: { x: ridge.x1, y: ridge.y1 }, vertex2: { x: ridge.x2, y: ridge.y2 } }
const is = edgesIntersection(prevEdge, ridgeEdge)
if (is) {
const isVectorX = Math.sign(prevRoof.x1 - is.x)
const isVectorY = Math.sign(prevRoof.y1 - is.y)
if (
isVectorX === prevVectorX &&
isVectorY === prevVectorY &&
((Math.abs(ridge.x1 - is.x) < 1 && Math.abs(ridge.y1 - is.y) < 1) || (Math.abs(ridge.x2 - is.x) < 1 && Math.abs(ridge.y2 - is.y) < 1))
) {
const size = Big(prevRoof.x1).minus(is.x).abs().pow(2).plus(Big(prevRoof.y1).minus(is.y).abs().pow(2)).sqrt().toNumber()
prevRidges.push({ ridge, size })
}
}
})
if (prevRidges.length > 0) {
prevRidges.sort((a, b) => a.size - b.size)
prevRidge = prevRidges[0].ridge
}
}
const nextEdge = { vertex1: { x: nextRoof.x1, y: nextRoof.y1 }, vertex2: { x: nextRoof.x2, y: nextRoof.y2 } }
const nextVectorX = Math.sign(nextLine.x1 - nextLine.x2)
const nextVectorY = Math.sign(nextLine.y1 - nextLine.y2)
if (nextLine.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
const hipLines = []
baseHipLines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const is = edgesIntersection(nextEdge, lineEdge)
if (is) {
const size = Big(is.x).minus(nextRoof.x1).abs().pow(2).plus(Big(is.y).minus(nextRoof.y1).abs().pow(2)).sqrt().toNumber()
hipLines.push({ line, is, size })
}
})
if (hipLines.length > 0) {
hipLines.sort((a, b) => a.size - b.size)
const hipLine = hipLines[0]
polygonPoints.push({ x: hipLine.is.x, y: hipLine.is.y })
const ridgePoint =
hipLine.is.x === hipLine.line.x1 && hipLine.is.y === hipLine.line.y1
? { x: hipLine.line.x2, y: hipLine.line.y2 }
: { x: hipLine.line.x1, y: hipLine.line.y1 }
nextRidge = baseGableRidgeLines.find(
(line) => (line.x1 === ridgePoint.x && line.y1 === ridgePoint.y) || (line.x2 === ridgePoint.x && line.y2 === ridgePoint.y),
)
}
} else {
const nextRidges = []
baseGableRidgeLines.forEach((ridge) => {
const ridgeEdge = { vertex1: { x: ridge.x1, y: ridge.y1 }, vertex2: { x: ridge.x2, y: ridge.y2 } }
const is = edgesIntersection(nextEdge, ridgeEdge)
if (is) {
const isVectorX = Math.sign(nextRoof.x1 - is.x)
const isVectorY = Math.sign(nextRoof.y1 - is.y)
if (
isVectorX === nextVectorX &&
isVectorY === nextVectorY &&
((Math.abs(ridge.x1 - is.x) < 1 && Math.abs(ridge.y1 - is.y) < 1) || (Math.abs(ridge.x2 - is.x) < 1 && Math.abs(ridge.y2 - is.y) < 1))
) {
const size = Big(nextLine.x1).minus(is.x).abs().pow(2).plus(Big(nextLine.y1).minus(is.y).abs().pow(2)).sqrt().toNumber()
nextRidges.push({ ridge, size })
}
}
})
if (nextRidges.length > 0) {
nextRidges.sort((a, b) => a.size - b.size)
nextRidge = nextRidges[0].ridge
}
}
let currentRidge
if (prevRidge) {
if (currentVectorX === 0) {
const minY = Math.min(currentLine.y1, currentLine.y2, currentRoof.y1, currentRoof.y2)
const maxY = Math.max(currentLine.y1, currentLine.y2, currentRoof.y1, currentRoof.y2)
if (minY <= prevRidge.y1 && maxY >= prevRidge.y1 && minY <= prevRidge.y2 && maxY >= prevRidge.y2) {
currentRidge = prevRidge
}
}
if (currentVectorY === 0) {
const minX = Math.min(currentLine.x1, currentLine.x2, currentRoof.x1, currentRoof.x2)
const maxX = Math.max(currentLine.x1, currentLine.x2, currentRoof.x1, currentRoof.x2)
if (minX <= prevRidge.x1 && maxX >= prevRidge.x1 && minX <= prevRidge.x2 && maxX >= prevRidge.x2) {
currentRidge = prevRidge
}
}
}
if (nextRidge) {
if (currentVectorX === 0) {
const minY = Math.min(currentLine.y1, currentLine.y2, currentRoof.y1, currentRoof.y2)
const maxY = Math.max(currentLine.y1, currentLine.y2, currentRoof.y1, currentRoof.y2)
if (minY <= nextRidge.y1 && maxY >= nextRidge.y1 && minY <= nextRidge.y2 && maxY >= nextRidge.y2) {
currentRidge = nextRidge
}
}
if (currentVectorY === 0) {
const minX = Math.min(currentLine.x1, currentLine.x2, currentRoof.x1, currentRoof.x2)
const maxX = Math.max(currentLine.x1, currentLine.x2, currentRoof.x1, currentRoof.x2)
if (minX <= nextRidge.x1 && maxX >= nextRidge.x1 && minX <= nextRidge.x2 && maxX >= nextRidge.x2) {
currentRidge = nextRidge
}
}
}
if (currentRidge) {
polygonPoints.push({ x: currentRidge.x1, y: currentRidge.y1 }, { x: currentRidge.x2, y: currentRidge.y2 })
/** 기준점이 될 포인트를 찾는다. 기준점 = 지붕선이나 hip 등에 붙지 않은 포인트 */
const checkRidgePoints = [
{ x: currentRidge.x1, y: currentRidge.y1, checkPoint: true },
{ x: currentRidge.x2, y: currentRidge.y2, checkPoint: true },
]
const ridgeEdge = { vertex1: { x: currentRidge.x1, y: currentRidge.y1 }, vertex2: { x: currentRidge.x2, y: currentRidge.y2 } }
/** 포인트가 지붕선과 붙은 경우 */
roof.lines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const is = edgesIntersection(ridgeEdge, lineEdge)
if (is) {
if (Math.abs(is.x - currentRidge.x1) < 1 && Math.abs(is.y - currentRidge.y1) < 1) {
checkRidgePoints[0].checkPoint = false
}
if (Math.abs(is.x - currentRidge.x2) < 1 && Math.abs(is.y - currentRidge.y2) < 1) {
checkRidgePoints[1].checkPoint = false
}
}
})
/** 포인트가 hip과 붙은 경우 */
baseHipLines
.filter((line) => line.x1 !== line.x2 && line.y1 !== line.y2)
.forEach((line) => {
if (
(Math.abs(line.x1 - currentRidge.x1) < 1 && Math.abs(line.y1 - currentRidge.y1) < 1) ||
(Math.abs(line.x2 - currentRidge.x1) < 1 && Math.abs(line.y2 - currentRidge.y1) < 1)
) {
checkRidgePoints[0].checkPoint = false
}
if (
(Math.abs(line.x1 - currentRidge.x2) < 1 && Math.abs(line.y1 - currentRidge.y2) < 1) ||
(Math.abs(line.x2 - currentRidge.x2) < 1 && Math.abs(line.y2 - currentRidge.y2) < 1)
) {
checkRidgePoints[1].checkPoint = false
}
})
const checkRidgePoint = checkRidgePoints.find((point) => point.checkPoint)
/** 마루에서 현재라인으로 향하는 외벽선까지의 포인트를 확인 하여 처리*/
let checkEdge
if (currentVectorX === 0) {
checkEdge = {
vertex1: { x: checkRidgePoint.x, y: checkRidgePoint.y },
vertex2: { x: currentRoof.x1, y: checkRidgePoint.y },
}
} else {
checkEdge = {
vertex1: { x: checkRidgePoint.x, y: checkRidgePoint.y },
vertex2: { x: checkRidgePoint.x, y: currentRoof.y1 },
}
}
const currentRoofEdge = { vertex1: { x: currentRoof.x1, y: currentRoof.y1 }, vertex2: { x: currentRoof.x2, y: currentRoof.y2 } }
const isRoofPoint = edgesIntersection(checkEdge, currentRoofEdge)
if (isRoofPoint) {
if (currentVectorX === 0) {
const minY = Math.min(currentRoof.y1, currentRoof.y2, isRoofPoint.y)
const maxY = Math.max(currentRoof.y1, currentRoof.y2, isRoofPoint.y)
polygonPoints.push({ x: isRoofPoint.x, y: minY }, { x: isRoofPoint.x, y: maxY })
} else {
const minX = Math.min(currentRoof.x1, currentRoof.x2, isRoofPoint.x)
const maxX = Math.max(currentRoof.x1, currentRoof.x2, isRoofPoint.x)
polygonPoints.push({ x: minX, y: isRoofPoint.y }, { x: maxX, y: isRoofPoint.y })
}
}
}
}
const uniquePoints = []
polygonPoints.forEach((point) => {
const isAlready = uniquePoints.find((uniquePoint) => uniquePoint.x === point.x && uniquePoint.y === point.y)
if (!isAlready) {
uniquePoints.push(point)
}
})
polygonPoints = getSortedPoint(uniquePoints, baseHipLines)
polygonPoints.forEach((currentPoint, index) => {
const nextPoint = polygonPoints[(index + 1) % polygonPoints.length]
const points = [currentPoint.x, currentPoint.y, nextPoint.x, nextPoint.y]
const ridgeLines = baseGableRidgeLines.filter(
(line) =>
(line.x1 === points[0] && line.y1 === points[1] && line.x2 === points[2] && line.y2 === points[3]) ||
(line.x1 === points[2] && line.y1 === points[3] && line.x2 === points[0] && line.y2 === points[1]),
)
const hipLines = baseHipLines.filter(
(line) =>
(line.x1 === points[0] && line.y1 === points[1] && line.x2 === points[2] && line.y2 === points[3]) ||
(line.x1 === points[2] && line.y1 === points[3] && line.x2 === points[0] && line.y2 === points[1]),
)
/** 이미 존재하는 라인이면 넘긴다.*/
if (ridgeLines.length > 0 || hipLines.length > 0) {
return
}
const hipLine = drawHipLine(points, canvas, roof, textMode, null, currentDegree, currentDegree)
if (currentVectorX === 0) {
if (Math.sign(currentPoint.x - nextPoint.x) === 0) {
hipLine.attributes.actualSize = hipLine.attributes.planeSize
}
} else {
if (Math.sign(currentPoint.y - nextPoint.y) === 0) {
hipLine.attributes.actualSize = hipLine.attributes.planeSize
}
}
baseHipLines.push({ x1: hipLine.x1, y1: hipLine.y1, x2: hipLine.x2, y2: hipLine.y2, line: hipLine })
})
})
/** 케라바 지붕에 연결된 마루 중 처마라인이 그려지지 않은 경우 확*/
baseGableRidgeLines.forEach((ridge) => {
const ridgeVectorX = Math.sign(ridge.x1 - ridge.x2)
const ridgeVectorY = Math.sign(ridge.y1 - ridge.y2)
const firstGableLines = []
const secondGableLines = []
baseGableLines
.filter((line) => (ridgeVectorX === 0 ? line.x1 !== line.x2 : line.y1 !== line.y2))
.filter((line) => (line.x1 === ridge.x1 && line.y1 === ridge.y1) || (line.x2 === ridge.x1 && line.y2 === ridge.y1))
.forEach((line) => firstGableLines.push(line))
baseGableLines
.filter((line) => (ridgeVectorX === 0 ? line.x1 !== line.x2 : line.y1 !== line.y2))
.filter((line) => (line.x1 === ridge.x2 && line.y1 === ridge.y2) || (line.x2 === ridge.x2 && line.y2 === ridge.y2))
.forEach((line) => secondGableLines.push(line))
baseHipLines
.filter((line) => (ridgeVectorX === 0 ? line.x1 !== line.x2 : line.y1 !== line.y2))
.filter((line) => (line.x1 === ridge.x1 && line.y1 === ridge.y1) || (line.x2 === ridge.x1 && line.y2 === ridge.y1))
.forEach((line) => firstGableLines.push(line))
baseHipLines
.filter((line) => (ridgeVectorX === 0 ? line.x1 !== line.x2 : line.y1 !== line.y2))
.filter((line) => (line.x1 === ridge.x2 && line.y1 === ridge.y2) || (line.x2 === ridge.x2 && line.y2 === ridge.y2))
.forEach((line) => secondGableLines.push(line))
let degree1, degree2
if (firstGableLines.length < 2 || secondGableLines.length < 2) {
drawBaseLines.forEach((currentBaseLine, index) => {
let prevBaseLine = drawBaseLines[(index - 1 + drawBaseLines.length) % drawBaseLines.length]
let nextBaseLine = drawBaseLines[(index + 1) % drawBaseLines.length]
const currentLine = currentBaseLine.line
const prevLine = prevBaseLine.line
const nextLine = nextBaseLine.line
const prevAngle = calculateAngle(prevLine.startPoint, prevLine.endPoint)
const nextAngle = calculateAngle(nextLine.startPoint, nextLine.endPoint)
if (
gableType.includes(currentLine.attributes?.type) &&
eavesType.includes(prevLine.attributes?.type) &&
eavesType.includes(nextLine.attributes?.type) &&
Big(prevAngle).minus(Big(nextAngle)).abs().eq(180)
) {
if (
ridgeVectorX === 0 &&
currentLine.x1 !== currentLine.x2 &&
((currentLine.x1 <= ridge.x1 && ridge.x1 <= currentLine.x2) || (currentLine.x2 <= ridge.x1 && ridge.x1 <= currentLine.x1))
) {
degree1 = getDegreeByChon(prevLine.attributes.pitch)
degree2 = getDegreeByChon(nextLine.attributes.pitch)
}
if (
ridgeVectorY === 0 &&
currentLine.y1 !== currentLine.y2 &&
((currentLine.y1 <= ridge.y1 && ridge.y1 <= currentLine.y2) || (currentLine.y2 <= ridge.y1 && ridge.y1 <= currentLine.y1))
) {
degree1 = getDegreeByChon(prevLine.attributes.pitch)
degree2 = getDegreeByChon(nextLine.attributes.pitch)
}
}
})
}
if (firstGableLines.length < 2) {
const connectRoof = roof.lines.find(
(line) =>
(line.x1 <= ridge.x1 && line.x2 >= ridge.x1 && line.y1 <= ridge.y1 && line.y2 >= ridge.y1) ||
(line.x2 <= ridge.x1 && line.x1 >= ridge.x1 && line.y2 <= ridge.y1 && line.y1 >= ridge.y1),
)
if (connectRoof) {
let hipPoint1 = [connectRoof.x1, connectRoof.y1, ridge.x1, ridge.y1]
let hipPoint2 = [connectRoof.x2, connectRoof.y2, ridge.x1, ridge.y1]
let intersectPoints1
let intersectPoints2
baseHipLines
.filter((line) => line.x1 !== line.x2 && line.y1 !== line.y2)
.forEach((hip) => {
const line = hip.line
if (
(hipPoint1[0] <= line.x1 && line.x1 <= hipPoint1[2] && hipPoint1[1] <= line.y1 && line.y1 <= hipPoint1[3]) ||
(hipPoint1[2] <= line.x1 && line.x1 <= hipPoint1[0] && hipPoint1[3] <= line.y1 && line.y1 <= hipPoint1[1])
) {
intersectPoints1 = { x: line.x1, y: line.y1 }
}
if (
(hipPoint1[0] <= line.x2 && line.x2 <= hipPoint1[2] && hipPoint1[1] <= line.y2 && line.y2 <= hipPoint1[3]) ||
(hipPoint1[2] <= line.x2 && line.x2 <= hipPoint1[0] && hipPoint1[3] <= line.y2 && line.y2 <= hipPoint1[1])
) {
intersectPoints1 = { x: line.x2, y: line.y2 }
}
if (
(hipPoint2[0] <= line.x1 && line.x1 <= hipPoint2[2] && hipPoint2[1] <= line.y1 && line.y1 <= hipPoint2[3]) ||
(hipPoint2[2] <= line.x1 && line.x1 <= hipPoint2[0] && hipPoint2[3] <= line.y1 && line.y1 <= hipPoint2[1])
) {
intersectPoints2 = { x: line.x1, y: line.y1 }
}
if (
(hipPoint2[0] <= line.x2 && line.x2 <= hipPoint2[2] && hipPoint2[1] <= line.y2 && line.y2 <= hipPoint2[3]) ||
(hipPoint2[2] <= line.x2 && line.x2 <= hipPoint2[0] && hipPoint2[3] <= line.y2 && line.y2 <= hipPoint2[1])
) {
intersectPoints2 = { x: line.x2, y: line.y2 }
}
})
if (intersectPoints1) {
hipPoint1 = [intersectPoints1.x, intersectPoints1.y, ridge.x1, ridge.y1]
}
if (intersectPoints2) {
hipPoint2 = [intersectPoints2.x, intersectPoints2.y, ridge.x1, ridge.y1]
}
if (hipPoint1) {
const hipLines = baseHipLines.filter(
(line) =>
(line.line.x1 === hipPoint1[0] && line.line.y1 === hipPoint1[1] && line.line.x2 === hipPoint1[2] && line.line.y2 === hipPoint1[3]) ||
(line.line.x2 === hipPoint1[0] && line.line.y2 === hipPoint1[1] && line.line.x1 === hipPoint1[2] && line.line.y1 === hipPoint1[3]),
)
const gableLines = baseGableLines.filter(
(line) =>
(line.x1 === hipPoint1[0] && line.y1 === hipPoint1[1] && line.x2 === hipPoint1[2] && line.y2 === hipPoint1[3]) ||
(line.x2 === hipPoint1[0] && line.y2 === hipPoint1[1] && line.x1 === hipPoint1[2] && line.y1 === hipPoint1[3]),
)
if (gableLines.length === 0 && hipLines.length === 0) {
const hipLine1 = drawHipLine(hipPoint1, canvas, roof, textMode, null, degree1, degree1)
baseHipLines.push({ x1: hipLine1.x1, y1: hipLine1.y1, x2: hipLine1.x2, y2: hipLine1.y2, line: hipLine1 })
}
}
if (hipPoint2) {
const hipLines = baseHipLines.filter(
(line) =>
(line.line.x1 === hipPoint2[0] && line.line.y1 === hipPoint2[1] && line.line.x2 === hipPoint2[2] && line.line.y2 === hipPoint2[3]) ||
(line.line.x2 === hipPoint2[0] && line.line.y2 === hipPoint2[1] && line.line.x1 === hipPoint2[2] && line.line.y1 === hipPoint2[3]),
)
const gableLines = baseGableLines.filter(
(line) =>
(line.x1 === hipPoint2[0] && line.y1 === hipPoint2[1] && line.x2 === hipPoint2[2] && line.y2 === hipPoint2[3]) ||
(line.x2 === hipPoint2[0] && line.y2 === hipPoint2[1] && line.x1 === hipPoint2[2] && line.y1 === hipPoint2[3]),
)
if (hipLines.length === 0 && gableLines.length === 0) {
const hipLine2 = drawHipLine(hipPoint2, canvas, roof, textMode, null, degree2, degree2)
baseHipLines.push({ x1: hipLine2.x1, y1: hipLine2.y1, x2: hipLine2.x2, y2: hipLine2.y2, line: hipLine2 })
}
}
}
}
if (secondGableLines.length < 2) {
const connectRoof = roof.lines.find(
(line) =>
(line.x1 <= ridge.x2 && line.x2 >= ridge.x2 && line.y1 <= ridge.y2 && line.y2 >= ridge.y2) ||
(line.x2 <= ridge.x2 && line.x1 >= ridge.x2 && line.y2 <= ridge.y2 && line.y1 >= ridge.y2),
)
if (connectRoof) {
let hipPoint1 = [connectRoof.x1, connectRoof.y1, ridge.x2, ridge.y2]
let hipPoint2 = [connectRoof.x2, connectRoof.y2, ridge.x2, ridge.y2]
let intersectPoints1
let intersectPoints2
baseHipLines
.filter((line) => line.x1 !== line.x2 && line.y1 !== line.y2)
.forEach((hip) => {
const line = hip.line
if (
(hipPoint1[0] <= line.x1 && line.x1 <= hipPoint1[2] && hipPoint1[1] <= line.y1 && line.y1 <= hipPoint1[3]) ||
(hipPoint1[2] <= line.x1 && line.x1 <= hipPoint1[0] && hipPoint1[3] <= line.y1 && line.y1 <= hipPoint1[1])
) {
intersectPoints1 = { x: line.x1, y: line.y1 }
}
if (
(hipPoint1[0] <= line.x2 && line.x2 <= hipPoint1[2] && hipPoint1[1] <= line.y2 && line.y2 <= hipPoint1[3]) ||
(hipPoint1[2] <= line.x2 && line.x2 <= hipPoint1[0] && hipPoint1[3] <= line.y2 && line.y2 <= hipPoint1[1])
) {
intersectPoints1 = { x: line.x2, y: line.y2 }
}
if (
(hipPoint2[0] <= line.x1 && line.x1 <= hipPoint2[2] && hipPoint2[1] <= line.y1 && line.y1 <= hipPoint2[3]) ||
(hipPoint2[2] <= line.x1 && line.x1 <= hipPoint2[0] && hipPoint2[3] <= line.y1 && line.y1 <= hipPoint2[1])
) {
intersectPoints2 = { x: line.x1, y: line.y1 }
}
if (
(hipPoint2[0] <= line.x2 && line.x2 <= hipPoint2[2] && hipPoint2[1] <= line.y2 && line.y2 <= hipPoint2[3]) ||
(hipPoint2[2] <= line.x2 && line.x2 <= hipPoint2[0] && hipPoint2[3] <= line.y2 && line.y2 <= hipPoint2[1])
) {
intersectPoints2 = { x: line.x2, y: line.y2 }
}
})
if (intersectPoints1) {
hipPoint1 = [intersectPoints1.x, intersectPoints1.y, ridge.x2, ridge.y2]
}
if (intersectPoints2) {
hipPoint2 = [intersectPoints2.x, intersectPoints2.y, ridge.x2, ridge.y2]
}
if (hipPoint1) {
const hipLines = baseHipLines.filter(
(line) =>
(line.line.x1 === hipPoint1[0] && line.line.y1 === hipPoint1[1] && line.line.x2 === hipPoint1[2] && line.line.y2 === hipPoint1[3]) ||
(line.line.x2 === hipPoint1[0] && line.line.y2 === hipPoint1[1] && line.line.x1 === hipPoint1[2] && line.line.y1 === hipPoint1[3]),
)
const gableLines = baseGableLines.filter(
(line) =>
(line.x1 === hipPoint1[0] && line.y1 === hipPoint1[1] && line.x2 === hipPoint1[2] && line.y2 === hipPoint1[3]) ||
(line.x2 === hipPoint1[0] && line.y2 === hipPoint1[1] && line.x1 === hipPoint1[2] && line.y1 === hipPoint1[3]),
)
if (hipLines.length === 0 && gableLines.length === 0) {
const hipLine1 = drawHipLine(hipPoint1, canvas, roof, textMode, null, degree1, degree1)
baseHipLines.push({ x1: hipLine1.x1, y1: hipLine1.y1, x2: hipLine1.x2, y2: hipLine1.y2, line: hipLine1 })
}
}
if (hipPoint2) {
const hipLines = baseHipLines.filter(
(line) =>
(line.line.x1 === hipPoint2[0] && line.line.y1 === hipPoint2[1] && line.line.x2 === hipPoint2[2] && line.line.y2 === hipPoint2[3]) ||
(line.line.x2 === hipPoint2[0] && line.line.y2 === hipPoint2[1] && line.line.x1 === hipPoint2[2] && line.line.y1 === hipPoint2[3]),
)
const gableLines = baseGableLines.filter(
(line) =>
(line.x1 === hipPoint2[0] && line.y1 === hipPoint2[1] && line.x2 === hipPoint2[2] && line.y2 === hipPoint2[3]) ||
(line.x2 === hipPoint2[0] && line.y2 === hipPoint2[1] && line.x1 === hipPoint2[2] && line.y1 === hipPoint2[3]),
)
if (hipLines.length === 0 && gableLines.length === 0) {
const hipLine2 = drawHipLine(hipPoint2, canvas, roof, textMode, null, degree2, degree2)
baseHipLines.push({ x1: hipLine2.x1, y1: hipLine2.y1, x2: hipLine2.x2, y2: hipLine2.y2, line: hipLine2 })
}
}
}
}
})
/** 팔작지붕 */
drawHipAndGableFirst.forEach((current) => {
const { currentBaseLine, prevBaseLine, nextBaseLine } = current
const currentLine = currentBaseLine.line
const prevLine = prevBaseLine.line
const nextLine = nextBaseLine.line
let { x1, x2, y1, y2 } = currentBaseLine
const currentDegree = getDegreeByChon(currentLine.attributes.pitch)
const prevDegree = getDegreeByChon(prevLine.attributes.pitch)
const nextDegree = getDegreeByChon(nextLine.attributes.pitch)
let beforePrevLine, afterNextLine
drawBaseLines.forEach((line, index) => {
if (line === prevBaseLine) {
beforePrevLine = drawBaseLines[(index - 1 + drawBaseLines.length) % drawBaseLines.length]
}
if (line === nextBaseLine) {
afterNextLine = drawBaseLines[(index + 1) % drawBaseLines.length]
}
})
/** 팔작지붕 두께*/
const lineWidth =
currentLine.attributes.width < Big(currentLine.attributes.planeSize).div(20).toNumber()
? currentLine.attributes.width
: Big(currentLine.attributes.planeSize).div(20).toNumber()
const currentVectorX = Math.sign(currentLine.x2 - currentLine.x1)
const currentVectorY = Math.sign(currentLine.y2 - currentLine.y1)
const currentMidX = Big(currentLine.x1).plus(Big(currentLine.x2)).div(2)
const currentMidY = Big(currentLine.y1).plus(Big(currentLine.y2)).div(2)
const intersectionRoofs = []
if (currentVectorX === 0) {
const checkEdge = {
vertex1: { x: prevLine.x1, y: currentMidY.toNumber() },
vertex2: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === currentVectorX && Math.sign(line.y2 - line.y1) === currentVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
intersectionRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt(),
})
}
}
})
} else {
const checkEdge = {
vertex1: { x: currentMidX.toNumber(), y: prevLine.y1 },
vertex2: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === currentVectorX && Math.sign(line.y2 - line.y1) === currentVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
intersectionRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt(),
})
}
}
})
}
let currentRoof, prevRoof, nextRoof
if (intersectionRoofs.length > 0) {
currentRoof = intersectionRoofs.sort((a, b) => a.size - b.size)[0].line
}
roof.lines.forEach((line, index) => {
if (line === currentRoof) {
prevRoof = roof.lines[(index - 1 + roof.lines.length) % roof.lines.length]
nextRoof = roof.lines[(index + 1) % roof.lines.length]
}
})
// /** 이전, 다음라인의 사잇각의 vector를 구한다. */
let prevVector = getHalfAngleVector(prevRoof, currentRoof)
let nextVector = getHalfAngleVector(currentRoof, nextRoof)
let prevHipVector = { x: Math.sign(prevVector.x), y: Math.sign(prevVector.y) }
let nextHipVector = { x: Math.sign(nextVector.x), y: Math.sign(nextVector.y) }
/** 현재 라인의 길이 추녀마루 길이의 기준이 된다. */
let hipSize = Big(lineWidth).pow(2).plus(Big(lineWidth).pow(2)).sqrt()
/** 이전 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const prevCheckPoint = {
x: Big(currentRoof.x1).plus(Big(prevHipVector.x).times(lineWidth)),
y: Big(currentRoof.y1).plus(Big(prevHipVector.y).times(lineWidth)),
}
if (!roof.inPolygon(prevCheckPoint)) {
prevHipVector = { x: Math.sign(prevHipVector.x * -1), y: Math.sign(prevHipVector.y * -1) }
}
/** 다음 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const nextCheckPoint = {
x: Big(currentRoof.x2).plus(Big(nextHipVector.x).times(lineWidth)),
y: Big(currentRoof.y2).plus(Big(nextHipVector.y).times(lineWidth)),
}
if (!roof.inPolygon(nextCheckPoint)) {
nextHipVector = { x: Math.sign(nextHipVector.x * -1), y: Math.sign(nextHipVector.y * -1) }
}
/** 처마끝에서 올라오는 라인*/
const prevPoint = [
currentRoof.x1,
currentRoof.y1,
Big(currentRoof.x1).plus(Big(prevHipVector.x).times(lineWidth)).toNumber(),
Big(currentRoof.y1).plus(Big(prevHipVector.y).times(lineWidth)).toNumber(),
]
const nextPoint = [
currentRoof.x2,
currentRoof.y2,
Big(currentRoof.x2).plus(Big(nextHipVector.x).times(lineWidth)).toNumber(),
Big(currentRoof.y2).plus(Big(nextHipVector.y).times(lineWidth)).toNumber(),
]
const prevHipLine = drawHipLine(prevPoint, canvas, roof, textMode, null, prevDegree, currentDegree)
const nextHipLine = drawHipLine(nextPoint, canvas, roof, textMode, null, currentDegree, nextDegree)
baseHipLines.push({ x1, y1, x2: prevHipLine.x1, y2: prevHipLine.y1, line: prevHipLine })
baseHipLines.push({ x1: x2, y1: y2, x2: nextHipLine.x1, y2: nextHipLine.y1, line: nextHipLine })
/** 처마끝에서 올라오는 라인에서 가운데로 모이는 라인*/
let midX, midY
if (currentVectorX === 0) {
midX = prevHipLine.x2
midY = currentMidY.toNumber()
} else {
midX = currentMidX.toNumber()
midY = prevHipLine.y2
}
const prevGablePoint = [prevHipLine.x2, prevHipLine.y2, midX, midY]
const nextGablePoint = [nextHipLine.x2, nextHipLine.y2, midX, midY]
const prevGableLine = drawHipLine(prevGablePoint, canvas, roof, textMode, null, prevDegree, currentDegree)
const nextGableLine = drawHipLine(nextGablePoint, canvas, roof, textMode, null, currentDegree, nextDegree)
baseHipLines.push({ x1: prevGableLine.x1, y1: prevGableLine.y1, x2: prevGableLine.x2, y2: prevGableLine.y2, line: prevGableLine })
baseHipLines.push({ x1: nextGableLine.x1, y1: nextGableLine.y1, x2: nextGableLine.x2, y2: nextGableLine.y2, line: nextGableLine })
let oppositeLine
baseLines
.filter((line) => line !== currentLine)
.filter((line) => (currentVectorX === 0 ? line.x1 === line.x2 : line.y1 === line.y2))
.forEach((oppCurrLine) => {
let checkEdge
if (currentVectorX === 0) {
checkEdge = {
vertex1: { x: midX, y: midY },
vertex2: { x: oppCurrLine.x1, y: midY },
}
} else {
checkEdge = {
vertex1: { x: midX, y: midY },
vertex2: { x: midX, y: oppCurrLine.y1 },
}
}
const lineEdge = { vertex1: { x: oppCurrLine.x1, y: oppCurrLine.y1 }, vertex2: { x: oppCurrLine.x2, y: oppCurrLine.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection && isPointOnLine(oppCurrLine, intersection)) {
const size =
calcLinePlaneSize({
x1: checkEdge.vertex1.x,
y1: checkEdge.vertex1.y,
x2: intersection.x,
y2: intersection.y,
}) / 10
oppositeLine = { intersection, size, oppCurrLine }
}
})
if (oppositeLine) {
const { intersection, size, oppCurrLine } = oppositeLine
let oppPrevLine, oppNextLine
let oppRoofLine
let ridgePoints = []
let ridgeSize
const ridgeEdge = {
vertex1: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
vertex2: { x: intersection.x, y: intersection.y },
}
if (prevLine.attributes.type === LINE_TYPE.WALLLINE.EAVES && beforePrevLine.line.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
let beforePrevVector = getHalfAngleVector(prevLine, beforePrevLine)
/** 이전 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const beforePrevCheckPoint = {
x: Big(prevLine.x1).plus(Big(beforePrevVector.x).times(10)),
y: Big(prevLine.y1).plus(Big(beforePrevVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(beforePrevCheckPoint)) {
beforePrevVector = { x: -beforePrevVector.x, y: -beforePrevVector.y }
}
const checkBeforeEdge = {
vertex1: { x: prevLine.x1, y: prevLine.y1 },
vertex2: {
x: Big(prevLine.x1).plus(Big(beforePrevVector.x).times(10)).toNumber(),
y: Big(prevLine.y1).plus(Big(beforePrevVector.y).times(10)).toNumber(),
},
}
const isBefore = edgesIntersection(checkBeforeEdge, ridgeEdge)
if (isBefore) {
const size = Big(isBefore.x).minus(midX).abs().pow(2).plus(Big(isBefore.y).minus(midY).abs().pow(2)).sqrt().toNumber()
ridgePoints.push({ x: isBefore.x, y: isBefore.y, size })
}
}
if (nextLine.attributes.type === LINE_TYPE.WALLLINE.EAVES && afterNextLine.line.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
let afterNextVector = getHalfAngleVector(nextLine, afterNextLine)
/** 다음 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const afterNextCheckPoint = {
x: Big(nextLine.x2).plus(Big(afterNextVector.x).times(10)),
y: Big(nextLine.y2).plus(Big(afterNextVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(afterNextCheckPoint)) {
afterNextVector = { x: -afterNextVector.x, y: -afterNextVector.y }
}
const checkAfterEdge = {
vertex1: { x: nextLine.x2, y: nextLine.y2 },
vertex2: {
x: Big(nextLine.x2).plus(Big(afterNextVector.x).times(10)).toNumber(),
y: Big(nextLine.y2).plus(Big(afterNextVector.y).times(10)).toNumber(),
},
}
const isAfter = edgesIntersection(checkAfterEdge, ridgeEdge)
if (isAfter) {
const size = Big(isAfter.x).minus(midX).abs().pow(2).plus(Big(isAfter.y).minus(midY).abs().pow(2)).sqrt().toNumber()
ridgePoints.push({ x: isAfter.x, y: isAfter.y, size })
}
}
baseLines.forEach((line, index) => {
if (line === oppCurrLine) {
oppPrevLine = baseLines[(index - 1 + baseLines.length) % baseLines.length]
oppNextLine = baseLines[(index + 1) % baseLines.length]
}
})
const oppositeRoofs = []
const oppositeMidX = Big(oppCurrLine.x1).plus(Big(oppCurrLine.x2)).div(2)
const oppositeMidY = Big(oppCurrLine.y1).plus(Big(oppCurrLine.y2)).div(2)
const oppositeVectorX = Math.sign(oppCurrLine.x2 - oppCurrLine.x1)
const oppositeVectorY = Math.sign(oppCurrLine.y2 - oppCurrLine.y1)
if (Math.sign(oppCurrLine.x1 - oppCurrLine.x2) === 0) {
const checkEdge = {
vertex1: { x: oppPrevLine.x1, y: oppositeMidY.toNumber() },
vertex2: { x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === oppositeVectorX && Math.sign(line.y2 - line.y1) === oppositeVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
oppositeRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(oppositeMidX).abs().pow(2).plus(Big(intersection.y).minus(oppositeMidY).abs().pow(2)).sqrt(),
})
}
}
})
} else {
const checkEdge = {
vertex1: { x: oppositeMidX.toNumber(), y: oppPrevLine.y1 },
vertex2: { x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === oppositeVectorX && Math.sign(line.y2 - line.y1) === oppositeVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
oppositeRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(oppositeMidX).abs().pow(2).plus(Big(intersection.y).minus(oppositeMidY).abs().pow(2)).sqrt(),
})
}
}
})
}
if (oppositeRoofs.length > 0) {
oppRoofLine = oppositeRoofs.sort((a, b) => a.size - b.size)[0].line
}
if (oppCurrLine.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
if (oppRoofLine) {
const oppRoofSize = Big(oppRoofLine.attributes.planeSize).div(20)
const ridgeEdge = {
vertex1: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
vertex2: { x: intersection.x, y: intersection.y },
}
if (oppPrevLine.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
let oppPrevVector = getHalfAngleVector(oppCurrLine, oppPrevLine)
oppPrevVector = { x: oppPrevVector.x, y: oppPrevVector.y }
/** 이전 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const prevCheckPoint = {
x: Big(oppCurrLine.x1).plus(Big(oppPrevVector.x).times(10)),
y: Big(oppCurrLine.y1).plus(Big(oppPrevVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(prevCheckPoint)) {
oppPrevVector = { x: -oppPrevVector.x, y: -oppPrevVector.y }
}
const oppPrevHipEdge = {
vertex1: {
x: oppRoofLine.x1,
y: oppRoofLine.y1,
},
vertex2: {
x: Big(oppRoofLine.x1).plus(Big(oppPrevVector.x).times(oppRoofSize)).toNumber(),
y: Big(oppRoofLine.y1).plus(Big(oppPrevVector.y).times(oppRoofSize)).toNumber(),
},
}
const isOppPrev = edgesIntersection(oppPrevHipEdge, ridgeEdge)
if (
isOppPrev &&
isPointOnLine(
{
x1: oppPrevHipEdge.vertex1.x,
y1: oppPrevHipEdge.vertex1.y,
x2: oppPrevHipEdge.vertex2.x,
y2: oppPrevHipEdge.vertex2.y,
},
isOppPrev,
)
) {
const size = Big(isOppPrev.x).minus(midX).abs().pow(2).plus(Big(isOppPrev.y).minus(midY).abs().pow(2)).sqrt().toNumber()
ridgePoints.push({ x: isOppPrev.x, y: isOppPrev.y, size })
}
}
if (oppNextLine.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
let oppNextVector = getHalfAngleVector(oppCurrLine, oppNextLine)
oppNextVector = { x: oppNextVector.x, y: oppNextVector.y }
/** 다음 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const nextCheckPoint = {
x: Big(oppCurrLine.x2).plus(Big(oppNextVector.x).times(10)),
y: Big(oppCurrLine.y2).plus(Big(oppNextVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(nextCheckPoint)) {
oppNextVector = { x: -oppNextVector.x, y: -oppNextVector.y }
}
const oppNextHipEdge = {
vertex1: {
x: oppRoofLine.x2,
y: oppRoofLine.y2,
},
vertex2: {
x: Big(oppRoofLine.x2).plus(Big(oppNextVector.x).times(oppRoofSize)).toNumber(),
y: Big(oppRoofLine.y2).plus(Big(oppNextVector.y).times(oppRoofSize)).toNumber(),
},
}
const isOppNext = edgesIntersection(oppNextHipEdge, ridgeEdge)
if (
isOppNext &&
isPointOnLine(
{
x1: oppNextHipEdge.vertex1.x,
y1: oppNextHipEdge.vertex1.y,
x2: oppNextHipEdge.vertex2.x,
y2: oppNextHipEdge.vertex2.y,
},
isOppNext,
)
) {
const size = Big(isOppNext.x).minus(midx).abs().pow(2).plus(Big(isOppNext.y).minus(midY).abs().pow(2)).sqrt().toNumber()
ridgePoints.push({ x: isOppNext.x, y: isOppNext.y, size })
}
}
}
} else if (oppCurrLine.attributes.type === LINE_TYPE.WALLLINE.HIPANDGABLE) {
ridgeSize = Big(size).minus(Big(oppCurrLine.attributes.width)).plus(Big(oppCurrLine.attributes.offset)).toNumber()
}
if (ridgePoints.length > 0) {
ridgeSize = ridgePoints.sort((a, b) => a.size - b.size)[0].size
}
if (ridgeSize > 0 && baseRidgeCount < getMaxRidge(baseLines.length)) {
const ridgeVectorX = Math.sign(midX - intersection.x)
const ridgeVectorY = Math.sign(midY - intersection.y)
const ridgePoint = [
midX,
midY,
Big(midX).minus(Big(ridgeSize).times(ridgeVectorX)).toNumber(),
Big(midY).minus(Big(ridgeSize).times(ridgeVectorY)).toNumber(),
]
const ridgeLine = drawRidgeLine(ridgePoint, canvas, roof, textMode)
baseRidgeLines.push(ridgeLine)
baseRidgeCount++
} else {
let ridges = []
baseGableRidgeLines
.filter(
(ridge) =>
(Math.abs(ridge.x1 - midX) < 1 && Math.abs(ridge.y1 - midY) < 1) || (Math.abs(ridge.x2 - midX) < 1 && Math.abs(ridge.y2 - midY) < 1),
)
.forEach((ridge) => ridges.push(ridge))
baseRidgeLines
.filter(
(ridge) =>
(Math.abs(ridge.x1 - midX) < 1 && Math.abs(ridge.y1 - midY) < 1) || (Math.abs(ridge.x2 - midX) < 1 && Math.abs(ridge.y2 - midY) < 1),
)
.forEach((ridge) => ridges.push(ridge))
if (ridges.length > 0) {
return
}
canvas.remove(prevGableLine)
canvas.remove(nextGableLine)
baseHipLines = baseHipLines.filter((base) => base.line !== prevGableLine && base.line !== nextGableLine)
const points = [prevGableLine.x1, prevGableLine.y1, nextGableLine.x1, nextGableLine.y1]
const gableLine = drawRoofLine(points, canvas, roof, textMode)
baseHipLines.push({ x1: gableLine.x1, y1: gableLine.y1, x2: gableLine.x2, y2: gableLine.y2, line: gableLine })
}
}
})
/** 벽과 이어진 마루를 그린다. */
drawWallRidgeLine.forEach((current) => {
const { currentBaseLine, prevBaseLine, nextBaseLine } = current
const currentLine = currentBaseLine.line
const prevLine = prevBaseLine.line
const nextLine = nextBaseLine.line
let beforePrevLine, afterNextLine
const prevDegree = getDegreeByChon(prevLine.attributes.pitch)
const nextDegree = getDegreeByChon(nextLine.attributes.pitch)
const currentMidX = Big(currentLine.x1).plus(Big(currentLine.x2)).div(2).toNumber()
const currentMidY = Big(currentLine.y1).plus(Big(currentLine.y2)).div(2).toNumber()
const currentVectorX = Math.sign(currentLine.x2 - currentLine.x1)
const currentVectorY = Math.sign(currentLine.y2 - currentLine.y1)
/** 이전 라인의 전라인, 다음 라인의 다음라인을 찾는다 */
drawBaseLines.forEach((line, index) => {
if (line === prevBaseLine) {
beforePrevLine = drawBaseLines[(index - 1 + drawBaseLines.length) % drawBaseLines.length]
}
if (line === nextBaseLine) {
afterNextLine = drawBaseLines[(index + 1) % drawBaseLines.length]
}
})
let oppositeLine
baseLines
.filter((line) => line !== currentLine)
.filter((line) => (currentVectorX === 0 ? line.x1 === line.x2 : line.y1 === line.y2))
.forEach((oppCurrLine) => {
let checkEdge
if (currentVectorX === 0) {
checkEdge = {
vertex1: { x: currentMidX, y: currentMidY },
vertex2: { x: oppCurrLine.x1, y: currentMidY },
}
} else {
checkEdge = {
vertex1: { x: currentMidX, y: currentMidY },
vertex2: { x: currentMidX, y: oppCurrLine.y1 },
}
}
const lineEdge = { vertex1: { x: oppCurrLine.x1, y: oppCurrLine.y1 }, vertex2: { x: oppCurrLine.x2, y: oppCurrLine.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection && isPointOnLine(oppCurrLine, intersection)) {
const size =
calcLinePlaneSize({
x1: checkEdge.vertex1.x,
y1: checkEdge.vertex1.y,
x2: intersection.x,
y2: intersection.y,
}) / 10
oppositeLine = { intersection, size, oppCurrLine }
}
})
const ridgePoints = []
if (oppositeLine) {
const { intersection, size, oppCurrLine } = oppositeLine
ridgePoints.push({ x: intersection.x, y: intersection.y, size })
const oppPrevLine = baseLines.find((line) => line.x2 === oppCurrLine.x1 && line.y2 === oppCurrLine.y1)
const oppNextLine = baseLines.find((line) => line.x1 === oppCurrLine.x2 && line.y1 === oppCurrLine.y2)
const oppositeRoofs = []
const oppositeMidX = Big(oppCurrLine.x1).plus(Big(oppCurrLine.x2)).div(2)
const oppositeMidY = Big(oppCurrLine.y1).plus(Big(oppCurrLine.y2)).div(2)
const oppositeVectorX = Math.sign(oppCurrLine.x2 - oppCurrLine.x1)
const oppositeVectorY = Math.sign(oppCurrLine.y2 - oppCurrLine.y1)
let oppRoofLine
if (Math.sign(oppCurrLine.x1 - oppCurrLine.x2) === 0) {
const checkEdge = {
vertex1: { x: oppPrevLine.x1, y: oppositeMidY.toNumber() },
vertex2: { x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === oppositeVectorX && Math.sign(line.y2 - line.y1) === oppositeVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
oppositeRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(oppositeMidX).abs().pow(2).plus(Big(intersection.y).minus(oppositeMidY).abs().pow(2)).sqrt(),
})
}
}
})
} else {
const checkEdge = {
vertex1: { x: oppositeMidX.toNumber(), y: oppPrevLine.y1 },
vertex2: { x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === oppositeVectorX && Math.sign(line.y2 - line.y1) === oppositeVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
oppositeRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(oppositeMidX).abs().pow(2).plus(Big(intersection.y).minus(oppositeMidY).abs().pow(2)).sqrt(),
})
}
}
})
}
if (oppositeRoofs.length > 0) {
oppRoofLine = oppositeRoofs.sort((a, b) => a.size - b.size)[0].line
}
if (oppRoofLine) {
const ridgeEdge = { vertex1: { x: currentMidX, y: currentMidY }, vertex2: { x: intersection.x, y: intersection.y } }
if (oppCurrLine.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
const oppRoofSize = Big(oppRoofLine.attributes.planeSize).div(20)
if (oppPrevLine.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
let oppPrevVector = getHalfAngleVector(oppCurrLine, oppPrevLine)
oppPrevVector = { x: oppPrevVector.x, y: oppPrevVector.y }
/** 이전 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const prevCheckPoint = {
x: Big(oppCurrLine.x1).plus(Big(oppPrevVector.x).times(10)),
y: Big(oppCurrLine.y1).plus(Big(oppPrevVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(prevCheckPoint)) {
oppPrevVector = { x: -oppPrevVector.x, y: -oppPrevVector.y }
}
const oppPrevHipEdge = {
vertex1: {
x: oppRoofLine.x1,
y: oppRoofLine.y1,
},
vertex2: {
x: Big(oppRoofLine.x1).plus(Big(oppPrevVector.x).times(oppRoofSize)).toNumber(),
y: Big(oppRoofLine.y1).plus(Big(oppPrevVector.y).times(oppRoofSize)).toNumber(),
},
}
const isOppPrev = edgesIntersection(oppPrevHipEdge, ridgeEdge)
if (
isOppPrev &&
isPointOnLine(
{
x1: oppPrevHipEdge.vertex1.x,
y1: oppPrevHipEdge.vertex1.y,
x2: oppPrevHipEdge.vertex2.x,
y2: oppPrevHipEdge.vertex2.y,
},
isOppPrev,
)
) {
const size = Big(isOppPrev.x).minus(currentMidX).abs().pow(2).plus(Big(isOppPrev.y).minus(currentMidY).abs().pow(2)).sqrt().toNumber()
ridgePoints.push({ x: isOppPrev.x, y: isOppPrev.y, size })
}
}
if (oppNextLine.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
let oppNextVector = getHalfAngleVector(oppCurrLine, oppNextLine)
oppNextVector = { x: oppNextVector.x, y: oppNextVector.y }
/** 다음 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const nextCheckPoint = {
x: Big(oppCurrLine.x2).plus(Big(oppNextVector.x).times(10)),
y: Big(oppCurrLine.y2).plus(Big(oppNextVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(nextCheckPoint)) {
oppNextVector = { x: -oppNextVector.x, y: -oppNextVector.y }
}
const oppNextHipEdge = {
vertex1: {
x: oppRoofLine.x2,
y: oppRoofLine.y2,
},
vertex2: {
x: Big(oppRoofLine.x2).plus(Big(oppNextVector.x).times(oppRoofSize)).toNumber(),
y: Big(oppRoofLine.y2).plus(Big(oppNextVector.y).times(oppRoofSize)).toNumber(),
},
}
const isOppNext = edgesIntersection(oppNextHipEdge, ridgeEdge)
if (
isOppNext &&
isPointOnLine(
{
x1: oppNextHipEdge.vertex1.x,
y1: oppNextHipEdge.vertex1.y,
x2: oppNextHipEdge.vertex2.x,
y2: oppNextHipEdge.vertex2.y,
},
isOppNext,
)
) {
const size = Big(isOppNext.x).minus(currentMidX).abs().pow(2).plus(Big(isOppNext.y).minus(currentMidY).abs().pow(2)).sqrt().toNumber()
ridgePoints.push({ x: isOppNext.x, y: isOppNext.y, size })
}
}
} else {
baseHipLines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(ridgeEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
const size = Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt()
ridgePoints.push({ x: intersection.x, y: intersection.y, size })
}
}
})
}
if (prevLine.attributes.type === LINE_TYPE.WALLLINE.EAVES && beforePrevLine.line.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
let beforePrevVector = getHalfAngleVector(prevLine, beforePrevLine)
const checkPoint = {
x: Big(prevLine.x1).plus(Big(beforePrevVector.x).times(10)),
y: Big(prevLine.y1).plus(Big(beforePrevVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(checkPoint)) {
beforePrevVector = { x: -beforePrevVector.x, y: -beforePrevVector.y }
}
const hipEdge = {
vertex1: { x: prevLine.x1, y: prevLine.y1 },
vertex2: {
x: Big(prevLine.x1).plus(Big(beforePrevVector.x).times(prevLine.attributes.planeSize)).toNumber(),
y: Big(prevLine.y1).plus(Big(beforePrevVector.y).times(prevLine.attributes.planeSize)).toNumber(),
},
}
const isLines = []
drawBaseLines
.filter((base) => base !== currentBaseLine && base !== prevBaseLine && base !== beforePrevLine)
.forEach((base) => {
const lineEdge = { vertex1: { x: base.line.x1, y: base.line.y1 }, vertex2: { x: base.line.x2, y: base.line.y2 } }
const intersection = edgesIntersection(hipEdge, lineEdge)
if (intersection && isPointOnLine(base.line, intersection)) {
const size = Big(intersection.x)
.minus(prevLine.x1)
.abs()
.pow(2)
.plus(Big(intersection.y).minus(prevLine.y1).abs().pow(2))
.sqrt()
.toNumber()
isLines.push({ intersection, size })
}
})
if (isLines.length > 0) {
const hipSize = getAdjacent(isLines.sort((a, b) => a.size - b.size)[0].size / 2)
const hipPoint = [
prevLine.x1,
prevLine.y1,
Big(prevLine.x1).plus(Big(beforePrevVector.x).times(hipSize)).toNumber(),
Big(prevLine.y1).plus(Big(beforePrevVector.y).times(hipSize)).toNumber(),
]
const hipEdge = { vertex1: { x: hipPoint[0], y: hipPoint[1] }, vertex2: { x: hipPoint[2], y: hipPoint[3] } }
const intersection = edgesIntersection(ridgeEdge, hipEdge)
if (
intersection &&
(isPointOnLine({ x1: hipPoint[0], y1: hipPoint[1], x2: hipPoint[2], y2: hipPoint[3] }, intersection) ||
(Math.abs(hipPoint[0] - intersection.x) < 1 && Math.abs(hipPoint[1] - intersection.y) < 1) ||
(Math.abs(hipPoint[2] - intersection.x) < 1 && Math.abs(hipPoint[3] - intersection.y) < 1))
) {
const size = Big(intersection.x)
.minus(currentMidX)
.abs()
.pow(2)
.plus(Big(intersection.y).minus(currentMidY).abs().pow(2))
.sqrt()
.toNumber()
ridgePoints.push({ x: intersection.x, y: intersection.y, size })
}
}
}
if (nextLine.attributes.type === LINE_TYPE.WALLLINE.EAVES && afterNextLine.line.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
let afterNextVector = getHalfAngleVector(nextLine, afterNextLine)
const checkPoint = {
x: Big(nextLine.x1).plus(Big(afterNextVector.x).times(10)),
y: Big(nextLine.y1).plus(Big(afterNextVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(checkPoint)) {
afterNextVector = { x: -afterNextVector.x, y: -afterNextVector.y }
}
const hipEdge = {
vertex1: { x: nextLine.x2, y: nextLine.y2 },
vertex2: {
x: Big(nextLine.x2).plus(Big(afterNextVector.x).times(nextLine.attributes.planeSize)).toNumber(),
y: Big(nextLine.y2).plus(Big(afterNextVector.y).times(nextLine.attributes.planeSize)).toNumber(),
},
}
const isLines = []
drawBaseLines
.filter((base) => base !== currentBaseLine && base !== nextBaseLine && base !== afterNextLine)
.forEach((base) => {
const lineEdge = { vertex1: { x: base.line.x1, y: base.line.y1 }, vertex2: { x: base.line.x2, y: base.line.y2 } }
const intersection = edgesIntersection(hipEdge, lineEdge)
if (intersection && isPointOnLine(base.line, intersection)) {
const size = Big(intersection.x)
.minus(nextLine.x2)
.abs()
.pow(2)
.plus(Big(intersection.y).minus(nextLine.y2).abs().pow(2))
.sqrt()
.toNumber()
isLines.push({ intersection, size })
}
})
if (isLines.length > 0) {
const hipSize = getAdjacent(isLines.sort((a, b) => a.size - b.size)[0].size / 2)
const hipPoint = [
nextLine.x2,
nextLine.y2,
Big(nextLine.x2).plus(Big(afterNextVector.x).times(hipSize)).toNumber(),
Big(nextLine.y2).plus(Big(afterNextVector.y).times(hipSize)).toNumber(),
]
const hipEdge = { vertex1: { x: hipPoint[0], y: hipPoint[1] }, vertex2: { x: hipPoint[2], y: hipPoint[3] } }
const intersection = edgesIntersection(ridgeEdge, hipEdge)
if (
intersection &&
(isPointOnLine({ x1: hipPoint[0], y1: hipPoint[1], x2: hipPoint[2], y2: hipPoint[3] }, intersection) ||
(Math.abs(hipPoint[0] - intersection.x) < 1 && Math.abs(hipPoint[1] - intersection.y) < 1) ||
(Math.abs(hipPoint[2] - intersection.x) < 1 && Math.abs(hipPoint[3] - intersection.y) < 1))
) {
const size = Big(intersection.x)
.minus(currentMidX)
.abs()
.pow(2)
.plus(Big(intersection.y).minus(currentMidY).abs().pow(2))
.sqrt()
.toNumber()
ridgePoints.push({ x: intersection.x, y: intersection.y, size })
}
}
}
}
}
if (ridgePoints.length === 0 || baseRidgeCount >= getMaxRidge(baseLines.length)) return
const ridgeEndPoint = ridgePoints.sort((a, b) => a.size - b.size)[0]
const ridgePoint = { x1: currentMidX, y1: currentMidY, x2: ridgeEndPoint.x, y2: ridgeEndPoint.y }
/** 포인트가 지붕밖에 있는 경우 조정*/
if (!roof.inPolygon({ x: ridgePoint.x1, y: ridgePoint.y1 })) {
const checkEdge = { vertex1: { x: ridgePoint.x2, y: ridgePoint.y2 }, vertex2: { x: ridgePoint.x1, y: ridgePoint.y1 } }
const isPoints = []
roof.lines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection && isPointOnLine(line, intersection)) {
if (
Math.sign(checkEdge.vertex1.x - checkEdge.vertex2.x) === Math.sign(checkEdge.vertex1.x - intersection.x) &&
Math.sign(checkEdge.vertex1.y - checkEdge.vertex2.y) === Math.sign(checkEdge.vertex1.y - intersection.y)
) {
const size = Big(intersection.x)
.minus(ridgePoint.x2)
.abs()
.pow(2)
.plus(Big(intersection.y).minus(ridgePoint.y2).abs().pow(2))
.sqrt()
.toNumber()
isPoints.push({ x: intersection.x, y: intersection.y, size })
}
}
})
if (isPoints.length > 0) {
const newPoint = isPoints.sort((a, b) => a.size - b.size)[0]
ridgePoint.x1 = newPoint.x
ridgePoint.y1 = newPoint.y
}
}
if (!roof.inPolygon({ x: ridgePoint.x2, y: ridgePoint.y2 })) {
const checkEdge = { vertex1: { x: ridgePoint.x1, y: ridgePoint.y1 }, vertex2: { x: ridgePoint.x2, y: ridgePoint.y2 } }
const isPoints = []
roof.lines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection && isPointOnLine(line, intersection)) {
if (
Math.sign(checkEdge.vertex1.x - checkEdge.vertex2.x) === Math.sign(checkEdge.vertex1.x - intersection.x) &&
Math.sign(checkEdge.vertex1.y - checkEdge.vertex2.y) === Math.sign(checkEdge.vertex1.y - intersection.y)
) {
const size = Big(intersection.x)
.minus(ridgePoint.x1)
.abs()
.pow(2)
.plus(Big(intersection.y).minus(ridgePoint.y1).abs().pow(2))
.sqrt()
.toNumber()
isPoints.push({ x: intersection.x, y: intersection.y, size })
}
}
})
if (isPoints.length > 0) {
const newPoint = isPoints.sort((a, b) => a.size - b.size)[0]
ridgePoint.x2 = newPoint.x
ridgePoint.y2 = newPoint.y
}
}
const ridge = drawRidgeLine([ridgePoint.x1, ridgePoint.y1, ridgePoint.x2, ridgePoint.y2], canvas, roof, textMode)
baseRidgeLines.push(ridge)
baseRidgeCount++
/** 현재 라인의 지붕 라인을 찾는다. */
const intersectionRoofs = []
let currentRoof
if (currentVectorX === 0) {
const checkEdge = {
vertex1: { x: prevLine.x1, y: currentMidY },
vertex2: { x: currentMidX, y: currentMidY },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === currentVectorX && Math.sign(line.y2 - line.y1) === currentVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
intersectionRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt(),
})
}
}
})
} else {
const checkEdge = {
vertex1: { x: currentMidX, y: prevLine.y1 },
vertex2: { x: currentMidX, y: currentMidY },
}
roof.lines
.filter((line) => Math.sign(line.x2 - line.x1) === currentVectorX && Math.sign(line.y2 - line.y1) === currentVectorY)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection) {
if (isPointOnLine(line, intersection)) {
intersectionRoofs.push({
line,
intersection,
size: Big(intersection.x).minus(currentMidX).abs().pow(2).plus(Big(intersection.y).minus(currentMidY).abs().pow(2)).sqrt(),
})
}
}
})
}
if (intersectionRoofs.length > 0) {
currentRoof = intersectionRoofs.sort((a, b) => a.size - b.size)[0].line
}
if (currentRoof) {
const prevHipPoint = [currentRoof.x1, currentRoof.y1, currentMidX, currentMidY]
const nextHipPoint = [currentRoof.x2, currentRoof.y2, currentMidX, currentMidY]
const prevHipLine = drawHipLine(prevHipPoint, canvas, roof, textMode, null, prevDegree, prevDegree)
const nextHipLine = drawHipLine(nextHipPoint, canvas, roof, textMode, null, nextDegree, nextDegree)
baseHipLines.push({ x1: prevHipLine.x1, y1: prevHipLine.y1, x2: prevHipLine.x2, y2: prevHipLine.y2, line: prevHipLine })
baseHipLines.push({ x1: nextHipLine.x1, y1: nextHipLine.y1, x2: nextHipLine.x2, y2: nextHipLine.y2, line: nextHipLine })
}
})
/** ⨆ 모양 처마에 추녀마루를 그린다. */
drawEavesFirstLines.forEach((current) => {
// 확인용 라인, 포인트 제거
const { currentBaseLine, prevBaseLine, nextBaseLine } = current
const currentLine = currentBaseLine.line
const prevLine = prevBaseLine.line
const nextLine = nextBaseLine.line
let { x1, x2, y1, y2, size } = currentBaseLine
let beforePrevLine, afterNextLine
/** 이전 라인의 경사 */
const prevDegree = getDegreeByChon(prevLine.attributes.pitch)
/** 다음 라인의 경사 */
const currentDegree = getDegreeByChon(currentLine.attributes.pitch)
/** 이전 라인의 전라인, 다음 라인의 다음라인을 찾는다 */
drawBaseLines.forEach((line, index) => {
if (line === prevBaseLine) {
beforePrevLine = drawBaseLines[(index - 1 + drawBaseLines.length) % drawBaseLines.length]
}
if (line === nextBaseLine) {
afterNextLine = drawBaseLines[(index + 1) % drawBaseLines.length]
}
})
/** 이전, 다음라인의 사잇각의 vector를 구한다. */
let prevVector = getHalfAngleVector(prevLine, currentLine)
let nextVector = getHalfAngleVector(currentLine, nextLine)
let prevHipVector = { x: prevVector.x, y: prevVector.y }
let nextHipVector = { x: nextVector.x, y: nextVector.y }
/** 각 라인의 흐름 방향을 확인한다. */
const currentAngle = calculateAngle(currentLine.startPoint, currentLine.endPoint)
const prevAngle = calculateAngle(prevLine.startPoint, prevLine.endPoint)
const nextAngle = calculateAngle(nextLine.startPoint, nextLine.endPoint)
const beforePrevAngle = calculateAngle(beforePrevLine.line.startPoint, beforePrevLine.line.endPoint)
const afterNextAngle = calculateAngle(afterNextLine.line.startPoint, afterNextLine.line.endPoint)
/** 현재 라인의 길이 추녀마루 길이의 기준이 된다. */
let currentSize = Big(size).div(10)
/** 이전 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const prevCheckPoint = {
x: Big(x1).plus(Big(prevHipVector.x).times(10)),
y: Big(y1).plus(Big(prevHipVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(prevCheckPoint)) {
prevHipVector = { x: -prevHipVector.x, y: -prevHipVector.y }
}
/** 다음 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const nextCheckPoint = {
x: Big(x2).plus(Big(nextHipVector.x).times(10)),
y: Big(y2).plus(Big(nextHipVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(nextCheckPoint)) {
nextHipVector = { x: -nextHipVector.x, y: -nextHipVector.y }
}
/** 현재 라인의 길이를 기준으로 추녀 마루의 길이를 삼각함수를 사용하여 판단한다.*/
let hipLength = currentSize.div(2).pow(2).plus(currentSize.div(2).pow(2)).sqrt()
/**
* 현재 라인에서 2번째 전 라인과 2번째 후 라인의 각도가 같을때 -_- 와 같은 형태로 판단하고
* 맞은 편 외벽선까지의 거리를 확인후 currentSize 를 조정한다.
*/
if (beforePrevLine === afterNextLine || (currentAngle === beforePrevAngle && currentAngle === afterNextAngle)) {
console.log('4각 ::::::::: ')
const xVector = Big(nextLine.x2).minus(Big(nextLine.x1))
const yVector = Big(nextLine.y2).minus(Big(nextLine.y1))
const currentMidX = Big(x1).plus(Big(x2)).div(2)
const currentMidY = Big(y1).plus(Big(y2)).div(2)
const midLineEdge = {
vertex1: { x: currentMidX.toNumber(), y: currentMidY.toNumber() },
vertex2: {
x: currentMidX.plus(currentSize.times(Math.sign(xVector))).toNumber(),
y: currentMidY.plus(currentSize.times(Math.sign(yVector))).toNumber(),
},
}
/** 현재 라인의 중심 지점에서 현재라인의 길이만큼 다음라인의 방향만큼 거리를 확인한다*/
baseLines
.filter((line) => line !== currentLine)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(midLineEdge, lineEdge)
/** 현재라인의 길이만큼 거리가 모자라면 해당 길이 만큼을 현재라인의 길이로 판단하고 나머지 계산을 진행한다.*/
if (intersection && !intersection.isIntersectionOutside) {
const intersectionSize = Big(intersection.x)
.minus(Big(currentMidX))
.plus(Big(intersection.y).minus(Big(currentMidY)))
.abs()
if (intersectionSize.lt(currentSize)) {
currentSize = intersectionSize
}
}
})
hipLength = currentSize.div(2).pow(2).plus(currentSize.div(2).pow(2)).sqrt()
} else {
if (currentAngle !== beforePrevAngle && currentAngle !== afterNextAngle && beforePrevLine !== afterNextLine) {
const beforePrevX1 = beforePrevLine.x1,
beforePrevY1 = beforePrevLine.y1
const afterNextX2 = afterNextLine.x2,
afterNextY2 = afterNextLine.y2
/** beforePrevLine 과 afterNextLine 을 연결하는 사각형의 경우 6각으로 판단 */
const connectBAPoint = { x1: afterNextX2, y1: afterNextY2, x2: beforePrevX1, y2: beforePrevY1 }
const isConnect =
baseLines.filter(
(line) =>
line.x1 === connectBAPoint.x1 && line.y1 === connectBAPoint.y1 && line.x2 === connectBAPoint.x2 && line.y2 === connectBAPoint.y2,
).length > 0
/** 6각 */
if (isConnect) {
const checkScale = currentSize.pow(2).plus(currentSize.pow(2)).sqrt()
const intersectBaseLine = []
if (baseHipLines.filter((line) => line.x1 === x1 && line.y1 === y1).length === 0) {
const prevEndPoint = {
x: Big(x1).plus(Big(prevHipVector.x).times(checkScale)),
y: Big(y1).plus(Big(prevHipVector.y).times(checkScale)),
}
baseLines
.filter((line) => line !== currentLine && line !== prevLine && line !== nextLine)
.forEach((line) => {
const intersection = edgesIntersection(
{ vertex1: { x: x1, y: y1 }, vertex2: prevEndPoint },
{ vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } },
)
if (intersection && !intersection.isIntersectionOutside) {
intersectBaseLine.push({
intersection,
distance: Big(intersection.x)
.minus(Big(x1))
.pow(2)
.plus(Big(intersection.y).minus(Big(y1)).pow(2))
.sqrt(),
})
}
})
}
if (baseHipLines.filter((line) => line.x1 === x2 && line.y1 === y2).length === 0) {
const nextEndPoint = {
x: Big(x2).plus(Big(nextHipVector.x).times(checkScale)),
y: Big(y2).plus(Big(nextHipVector.y).times(checkScale)),
}
baseLines
.filter((line) => line !== currentLine && line !== prevLine && line !== nextLine)
.forEach((line) => {
const intersection = edgesIntersection(
{ vertex1: { x: x2, y: y2 }, vertex2: nextEndPoint },
{ vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } },
)
if (intersection && !intersection.isIntersectionOutside) {
intersectBaseLine.push({
intersection,
distance: Big(intersection.x)
.minus(Big(x2))
.pow(2)
.plus(Big(intersection.y).minus(Big(y2)).pow(2))
.sqrt(),
})
}
})
}
const intersection = intersectBaseLine.reduce((prev, current) => (prev.distance < current.distance ? prev : current), intersectBaseLine[0])
if (intersection) {
hipLength = intersection.distance
}
} else {
const rightAngleLine = baseLines
.filter(
(line) =>
line !== currentLine &&
line !== prevLine &&
line !== nextLine &&
(prevAngle === calculateAngle(line.startPoint, line.endPoint) || nextAngle === calculateAngle(line.startPoint, line.endPoint)),
)
.filter((line) => {
const index = baseLines.indexOf(line)
const prevLine = baseLines[(index - 1 + baseLines.length) % baseLines.length]
const nextLine = baseLines[(index + 1) % baseLines.length]
const prevAngle = calculateAngle(prevLine.startPoint, prevLine.endPoint)
const nextAngle = calculateAngle(nextLine.startPoint, nextLine.endPoint)
switch (prevAngle) {
case 90:
return nextAngle === -90
case -90:
return nextAngle === 90
case 0:
return nextAngle === 180
case 180:
return nextAngle === 0
}
})
const oppositeCurrentLine = baseLines
.filter((line) => {
const angle = calculateAngle(line.startPoint, line.endPoint)
switch (currentAngle) {
case 90:
return angle === -90
case -90:
return angle === 90
case 0:
return angle === 180
case 180:
return angle === 0
}
})
.filter((line) => {
const index = baseLines.indexOf(line)
const prevLine = baseLines[(index - 1 + baseLines.length) % baseLines.length]
const nextLine = baseLines[(index + 1) % baseLines.length]
const prevAngle = calculateAngle(prevLine.startPoint, prevLine.endPoint)
const nextAngle = calculateAngle(nextLine.startPoint, nextLine.endPoint)
switch (prevAngle) {
case 90:
return nextAngle === -90
case -90:
return nextAngle === 90
case 0:
return nextAngle === 180
case 180:
return nextAngle === 0
}
})
let checkHipPoints
if (baseHipLines.filter((line) => line.x1 === x1 && line.y1 === y1).length === 0) {
checkHipPoints = [
x1,
y1,
Big(x1).plus(Big(prevHipVector.x).times(hipLength)).round(2).toNumber(),
Big(y1).plus(Big(prevHipVector.y).times(hipLength)).round(2).toNumber(),
]
}
if (baseHipLines.filter((line) => line.x1 === x2 && line.y1 === y2).length === 0) {
checkHipPoints = [
x2,
y2,
Big(x2).plus(Big(nextHipVector.x).times(hipLength)).round(2).toNumber(),
Big(y2).plus(Big(nextHipVector.y).times(hipLength)).round(2).toNumber(),
]
}
if (checkHipPoints) {
const intersectPoints = []
rightAngleLine.forEach((line) => {
const intersection = edgesIntersection(
{
vertex1: { x: checkHipPoints[0], y: checkHipPoints[1] },
vertex2: { x: checkHipPoints[2], y: checkHipPoints[3] },
},
{ vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } },
)
if (intersection) {
intersectPoints.push({
intersection,
distance: Big(intersection.x)
.minus(Big(checkHipPoints[0]))
.pow(2)
.plus(Big(intersection.y).minus(Big(checkHipPoints[1])).pow(2))
.sqrt()
.toNumber(),
})
}
})
oppositeCurrentLine.forEach((line) => {
const intersection = edgesIntersection(
{
vertex1: { x: checkHipPoints[0], y: checkHipPoints[1] },
vertex2: { x: checkHipPoints[2], y: checkHipPoints[3] },
},
{ vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } },
)
if (intersection) {
intersectPoints.push({
intersection,
distance: Big(intersection.x)
.minus(Big(checkHipPoints[0]))
.pow(2)
.plus(Big(intersection.y).minus(Big(checkHipPoints[1])).pow(2))
.sqrt()
.toNumber(),
})
}
})
if (intersectPoints.length > 0) {
const intersection = intersectPoints.sort((a, b) => a.distance - b.distance)[0]
hipLength = getAdjacent(intersection.distance) / 2
}
}
}
}
}
let prevHipLine, nextHipLine
/** 이전라인과의 연결지점에 추녀마루를 그린다. */
if (baseHipLines.filter((line) => line.x1 === x1 && line.y1 === y1).length === 0) {
const prevEndPoint = {
x: Big(x1).plus(Big(prevHipVector.x).times(hipLength)).round(1),
y: Big(y1).plus(Big(prevHipVector.y).times(hipLength)).round(1),
}
if (!roof.inPolygon({ x: prevEndPoint.x.toNumber(), y: prevEndPoint.y.toNumber() })) {
const checkEdge = { vertex1: { x: prevEndPoint.x.toNumber(), y: prevEndPoint.y.toNumber() }, vertex2: { x: x1, y: y1 } }
const intersectionPoints = []
roof.lines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection && !intersection.isIntersectionOutside) {
const size = Big(intersection.x)
.minus(Big(prevEndPoint.x))
.pow(2)
.plus(Big(intersection.y).minus(Big(prevEndPoint.y)).pow(2))
.sqrt()
.toNumber()
intersectionPoints.push({ intersection, size })
}
})
if (intersectionPoints.length > 0) {
const intersection = intersectionPoints.sort((a, b) => a.size - b.size)[0].intersection
prevEndPoint.x = Big(intersection.x)
prevEndPoint.y = Big(intersection.y)
}
}
const overlapLine = baseHipLines.find((line) => isPointOnLine(line, { x: prevEndPoint.x.toNumber(), y: prevEndPoint.y.toNumber() }))
if (overlapLine) {
if (
isPointOnLine({ x1: x1, y1: y1, x2: prevEndPoint.x.toNumber(), y2: prevEndPoint.y.toNumber() }, { x: overlapLine.x1, y: overlapLine.y1 })
) {
prevEndPoint.x = Big(overlapLine.x1)
prevEndPoint.y = Big(overlapLine.y1)
}
if (
isPointOnLine({ x1: x1, y1: y1, x2: prevEndPoint.x.toNumber(), y2: prevEndPoint.y.toNumber() }, { x: overlapLine.x2, y: overlapLine.y2 })
) {
prevEndPoint.x = Big(overlapLine.x2)
prevEndPoint.y = Big(overlapLine.y2)
}
}
const intersectRidgeLine = []
baseRidgeLines.forEach((line) => {
const intersection = edgesIntersection(
{ vertex1: { x: x1, y: y1 }, vertex2: prevEndPoint },
{ vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } },
)
if (intersection && !intersection.isIntersectionOutside) {
intersectRidgeLine.push({
intersection,
distance: Big(intersection.x)
.minus(Big(x1))
.pow(2)
.plus(Big(intersection.y).minus(Big(y1)).pow(2))
.sqrt(),
})
}
})
const intersectRidge = intersectRidgeLine.reduce((prev, current) => (prev.distance < current.distance ? prev : current), intersectRidgeLine[0])
if (intersectRidge) {
prevEndPoint.x = Big(intersectRidge.intersection.x).round(1)
prevEndPoint.y = Big(intersectRidge.intersection.y).round(1)
}
const xVector = Math.sign(Big(prevEndPoint.x).minus(Big(x1)).neg().toNumber())
const yVector = Math.sign(Big(prevEndPoint.y).minus(Big(y1)).neg().toNumber())
/** 지붕 선까지의 곂침에 따른 길이를 파악하기 위한 scale*/
let scale = Big(currentLine.attributes.offset).pow(2).plus(Big(prevLine.attributes.offset).pow(2)).sqrt()
scale = scale.eq(0) ? Big(1) : scale
/** scale 만큼 추녀마루를 늘려서 겹치는 포인트를 확인한다. */
const hipEdge = {
vertex1: { x: Big(x1).plus(scale.times(xVector)).toNumber(), y: Big(y1).plus(scale.times(yVector)).toNumber() },
vertex2: prevEndPoint,
}
let intersectPoints = []
/** 외벽선에서 추녀 마루가 겹치는 경우에 대한 확인*/
roof.lines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(hipEdge, lineEdge)
if (
intersection &&
isPointOnLineNew(line, { x: intersection.x, y: intersection.y }) &&
Math.sign(prevEndPoint.x - x1) === Math.sign(prevEndPoint.x - intersection.x) &&
Math.sign(prevEndPoint.y - y1) === Math.sign(prevEndPoint.y - intersection.y)
) {
const intersectSize = prevEndPoint.x
.minus(Big(intersection.x))
.pow(2)
.plus(prevEndPoint.y.minus(Big(intersection.y)).pow(2))
.abs()
.sqrt()
.toNumber()
intersectPoints.push({
intersection,
size: intersectSize,
})
}
})
intersectPoints = intersectPoints.reduce((prev, current) => {
return prev.size < current.size ? prev : current
}, intersectPoints[0])
/** 겹치는 외벽선이 있을때 추녀마루를 외벽선 까지 늘려서 수정*/
if (intersectPoints && intersectPoints.intersection) {
prevHipLine = drawHipLine(
[intersectPoints.intersection.x, intersectPoints.intersection.y, prevEndPoint.x.toNumber(), prevEndPoint.y.toNumber()],
canvas,
roof,
textMode,
null,
prevDegree,
currentDegree,
)
baseHipLines.push({ x1, y1, x2: prevEndPoint.x.toNumber(), y2: prevEndPoint.y.toNumber(), line: prevHipLine })
}
}
if (baseHipLines.filter((line) => line.x1 === x2 && line.y1 === y2).length === 0) {
const nextEndPoint = {
x: Big(x2).plus(Big(nextHipVector.x).times(hipLength)).round(1),
y: Big(y2).plus(Big(nextHipVector.y).times(hipLength)).round(1),
}
if (!roof.inPolygon({ x: nextEndPoint.x.toNumber(), y: nextEndPoint.y.toNumber() })) {
const checkEdge = { vertex1: { x: nextEndPoint.x.toNumber(), y: nextEndPoint.y.toNumber() }, vertex2: { x: x2, y: y2 } }
const intersectionPoints = []
roof.lines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection && !intersection.isIntersectionOutside) {
const size = Big(intersection.x)
.minus(Big(nextEndPoint.x))
.pow(2)
.plus(Big(intersection.y).minus(Big(nextEndPoint.y)).pow(2))
.sqrt()
.toNumber()
intersectionPoints.push({ intersection, size })
}
})
if (intersectionPoints.length > 0) {
const intersection = intersectionPoints.sort((a, b) => a.size - b.size)[0].intersection
nextEndPoint.x = Big(intersection.x)
nextEndPoint.y = Big(intersection.y)
}
}
const overlapLine = baseHipLines.find((line) => isPointOnLine(line, { x: nextEndPoint.x.toNumber(), y: nextEndPoint.y.toNumber() }))
if (overlapLine) {
if (
isPointOnLine({ x1: x2, y1: y2, x2: nextEndPoint.x.toNumber(), y2: nextEndPoint.y.toNumber() }, { x: overlapLine.x1, y: overlapLine.y1 })
) {
nextEndPoint.x = Big(overlapLine.x1)
nextEndPoint.y = Big(overlapLine.y1)
}
if (
isPointOnLine({ x1: x2, y1: y2, x2: nextEndPoint.x.toNumber(), y2: nextEndPoint.y.toNumber() }, { x: overlapLine.x2, y: overlapLine.y2 })
) {
nextEndPoint.x = Big(overlapLine.x2)
nextEndPoint.y = Big(overlapLine.y2)
}
}
const intersectRidgeLine = []
baseRidgeLines.forEach((line) => {
const intersection = edgesIntersection(
{ vertex1: { x: x2, y: y2 }, vertex2: nextEndPoint },
{ vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } },
)
if (intersection && !intersection.isIntersectionOutside) {
intersectRidgeLine.push({
intersection,
distance: Big(intersection.x)
.minus(Big(x1))
.pow(2)
.plus(Big(intersection.y).minus(Big(y1)).pow(2))
.sqrt(),
})
}
})
const intersectRidge = intersectRidgeLine.reduce((prev, current) => (prev.distance < current.distance ? prev : current), intersectRidgeLine[0])
if (intersectRidge) {
nextEndPoint.x = Big(intersectRidge.intersection.x).round(1)
nextEndPoint.y = Big(intersectRidge.intersection.y).round(1)
}
const xVector = Math.sign(Big(nextEndPoint.x).minus(Big(x2)).neg().toNumber())
const yVector = Math.sign(Big(nextEndPoint.y).minus(Big(y2)).neg().toNumber())
let scale = Big(currentLine.attributes.offset).pow(2).plus(Big(nextLine.attributes.offset).pow(2)).sqrt()
scale = scale.eq(0) ? Big(1) : scale
const hipEdge = {
vertex1: { x: Big(x2).plus(scale.times(xVector)).toNumber(), y: Big(y2).plus(scale.times(yVector)).toNumber() },
vertex2: nextEndPoint,
}
let intersectPoints = []
roof.lines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(hipEdge, lineEdge)
if (
intersection &&
isPointOnLineNew(line, { x: intersection.x, y: intersection.y }) &&
Math.sign(nextEndPoint.x - x2) === Math.sign(nextEndPoint.x - intersection.x) &&
Math.sign(nextEndPoint.y - y2) === Math.sign(nextEndPoint.y - intersection.y)
) {
const intersectSize = nextEndPoint.x
.minus(Big(intersection.x))
.pow(2)
.plus(nextEndPoint.y.minus(Big(intersection.y)).pow(2))
.abs()
.sqrt()
.toNumber()
intersectPoints.push({
intersection,
size: intersectSize,
})
}
})
intersectPoints = intersectPoints.reduce((prev, current) => {
return prev.size < current.size ? prev : current
}, intersectPoints[0])
if (intersectPoints && intersectPoints.intersection) {
nextHipLine = drawHipLine(
[intersectPoints.intersection.x, intersectPoints.intersection.y, nextEndPoint.x.toNumber(), nextEndPoint.y.toNumber()],
canvas,
roof,
textMode,
null,
prevDegree,
currentDegree,
)
baseHipLines.push({
x1: x2,
y1: y2,
x2: nextEndPoint.x.toNumber(),
y2: nextEndPoint.y.toNumber(),
line: nextHipLine,
})
}
}
/** 두 선이 교차하면 해당 포인트까지로 선 조정*/
if (prevHipLine !== undefined && nextHipLine !== undefined) {
const prevEdge = {
vertex1: { x: prevHipLine.x1, y: prevHipLine.y1 },
vertex2: { x: prevHipLine.x2, y: prevHipLine.y2 },
}
const nextEdge = {
vertex1: { x: nextHipLine.x1, y: nextHipLine.y1 },
vertex2: { x: nextHipLine.x2, y: nextHipLine.y2 },
}
const intersection = edgesIntersection(prevEdge, nextEdge)
if (intersection) {
/** 포인트 조정*/
baseHipLines
.filter((line) => line.line === prevHipLine || line.line === nextHipLine)
.forEach((line) => {
line.x2 = intersection.x
line.y2 = intersection.y
line.line.set({ x2: intersection.x, y2: intersection.y })
})
prevHipLine.x2 = intersection.x
prevHipLine.y2 = intersection.y
const prevSize = reCalculateSize(prevHipLine)
prevHipLine.attributes.planeSize = prevSize.planeSize
prevHipLine.attributes.actualSize = prevSize.actualSize
prevHipLine.fire('modified')
nextHipLine.x2 = intersection.x
nextHipLine.y2 = intersection.y
const nextSize = reCalculateSize(nextHipLine)
nextHipLine.attributes.planeSize = nextSize.planeSize
nextHipLine.attributes.actualSize = nextSize.actualSize
nextHipLine.fire('modified')
canvas.renderAll()
}
}
/** 두 추녀마루가 한점에서 만나는 경우 해당 점을 기점으로 마루를 작성한다.*/
if (
prevHipLine !== undefined &&
nextHipLine !== undefined &&
Big(prevHipLine.x2).minus(Big(nextHipLine.x2)).abs().lte(1) &&
Big(prevHipLine.y2).minus(Big(nextHipLine.y2)).abs().lte(1)
) {
const startPoint = { x: prevHipLine.x2, y: prevHipLine.y2 }
let ridgeSize = 0
const currentMidX = Big(currentLine.x2).plus(Big(currentLine.x1)).div(2)
const currentMidY = Big(currentLine.y2).plus(Big(currentLine.y1)).div(2)
const xVector = Big(currentMidX).minus(Big(startPoint.x)).round(0, Big.roundDown)
const yVector = Big(currentMidY).minus(Big(startPoint.y)).round(0, Big.roundDown)
if (beforePrevLine === afterNextLine) {
console.log('4각 :::::::: ')
const oppositeMidX = Big(beforePrevLine.x2).plus(Big(beforePrevLine.x1)).div(2)
const oppositeMidY = Big(beforePrevLine.y2).plus(Big(beforePrevLine.y1)).div(2)
if (beforePrevLine.line.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
ridgeSize = oppositeMidX
.minus(Big(startPoint.x))
.abs()
.pow(2)
.plus(oppositeMidY.minus(Big(startPoint.y)).abs().pow(2))
.sqrt()
.minus(Big(beforePrevLine.line.attributes.planeSize).div(20))
} else {
let width = 0
if (beforePrevLine.line.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
width = beforePrevLine.line.attributes.width / 2
} else if (beforePrevLine.line.attributes.type === LINE_TYPE.WALLLINE.HIPANDGABLE) {
width = beforePrevLine.line.attributes.width
}
const checkEdge = { vertex1: { x: startPoint.x, y: startPoint.y }, vertex2: { x: oppositeMidX.toNumber(), y: oppositeMidY.toNumber() } }
const vectorX = Math.sign(startPoint.x - oppositeMidX.toNumber())
const vectorY = Math.sign(startPoint.y - oppositeMidY.toNumber())
const oppositeRoofPoints = []
roof.lines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdge, lineEdge)
if (intersection && Math.sign(startPoint.x - intersection.x) === vectorX && Math.sign(startPoint.y - intersection.y) === vectorY) {
const size = Big(intersection.x)
.minus(Big(startPoint.x))
.pow(2)
.plus(Big(intersection.y).minus(Big(startPoint.y)).pow(2))
.sqrt()
.toNumber()
oppositeRoofPoints.push({ intersection, size })
}
})
if (oppositeRoofPoints.length > 0) {
const oppositeRoofPoint = oppositeRoofPoints.sort((a, b) => a.size - b.size)[0].intersection
ridgeSize = Big(oppositeRoofPoint.x)
.minus(Big(startPoint.x))
.abs()
.pow(2)
.plus(Big(oppositeRoofPoint.y).minus(Big(startPoint.y)).abs().pow(2))
.minus(width)
.sqrt()
}
}
} else {
if (gableType.includes(beforePrevLine.line.attributes.type) || gableType.includes(afterNextLine.line.attributes.type)) {
const oppositeLine = gableType.includes(beforePrevLine.line.attributes.type) ? beforePrevLine.line : afterNextLine.line
const oppositeAngle = calculateAngle(oppositeLine.startPoint, oppositeLine.endPoint)
let checkEdge
if (Math.sign(oppositeLine.x1 - oppositeLine.x2) === 0) {
checkEdge = { vertex1: startPoint, vertex2: { x: oppositeLine.x1, y: startPoint.y } }
} else {
checkEdge = { vertex1: startPoint, vertex2: { x: startPoint.x, y: oppositeLine.y1 } }
}
if (currentAngle === oppositeAngle) {
const oppositeEdge = {
vertex1: { x: oppositeLine.x1, y: oppositeLine.y1 },
vertex2: { x: oppositeLine.x2, y: oppositeLine.y2 },
}
const intersection = edgesIntersection(oppositeEdge, checkEdge)
if (intersection) {
ridgeSize = Big(intersection.x)
.minus(Big(startPoint.x))
.pow(2)
.plus(Big(intersection.y).minus(Big(startPoint.y)).pow(2))
.sqrt()
}
} else {
const intersectPoints = []
roof.lines
.filter(
(line) =>
Math.sign(oppositeLine.x1 - oppositeLine.x2) === Math.sign(line.x1 - line.x2) &&
Math.sign(oppositeLine.y1 - oppositeLine.y2) === Math.sign(line.y1 - line.y2),
)
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(lineEdge, checkEdge)
if (intersection) {
const size = Big(startPoint.x)
.minus(Big(intersection.x))
.pow(2)
.plus(Big(startPoint.y).minus(Big(intersection.y)).pow(2))
.sqrt()
.toNumber()
intersectPoints.push({ intersection, size })
}
})
intersectPoints.sort((a, b) => a.size - b.size)
if (intersectPoints.length > 0) {
ridgeSize = Big(intersectPoints[0].size)
}
}
} else {
/** baseLines 에서 가장 작은 x1과 가장 큰 x1, 가장 작은 y1과 가장 큰 y1을 계산*/
let minX = Infinity
let maxX = -Infinity
let minY = Infinity
let maxY = -Infinity
baseLines.forEach((line) => {
if (line.x1 < minX) {
minX = line.x1
}
if (line.x1 > maxX) {
maxX = line.x1
}
if (line.y1 < minY) {
minY = line.y1
}
if (line.y1 > maxY) {
maxY = line.y1
}
})
const checkLength = Big(maxX)
.minus(Big(minX))
.pow(2)
.plus(Big(maxY).minus(Big(minY)).pow(2))
.sqrt()
const checkEdges = {
vertex1: { x: startPoint.x, y: startPoint.y },
vertex2: {
x: Big(startPoint.x).minus(checkLength.times(Math.sign(xVector))),
y: Big(startPoint.y).minus(checkLength.times(Math.sign(yVector))),
},
}
/** 맞은편 벽 까지의 길이 판단을 위한 교차되는 line*/
const intersectBaseLine = []
baseLines
.filter((line) => {
/** currentAngle 의 반대 각도인 라인 */
const angle = calculateAngle(line.startPoint, line.endPoint)
switch (currentAngle) {
case 90:
return angle === -90
case -90:
return angle === 90
case 0:
return angle === 180
case 180:
return angle === 0
}
})
.filter((line) => {
const currentMinX = Math.min(x1, x2)
const currentMaxX = Math.max(x1, x2)
const currentMinY = Math.min(y1, y2)
const currentMaxY = Math.max(y1, y2)
const lineMinX = Math.min(line.x1, line.x2)
const lineMaxX = Math.max(line.x1, line.x2)
const lineMinY = Math.min(line.y1, line.y2)
const lineMaxY = Math.max(line.y1, line.y2)
/** currentLine 의 안쪽에 있거나 currentLine이 line의 안쪽에 있는 라인 */
if (Big(currentLine.y1).minus(Big(currentLine.y2)).abs().lte(1)) {
return (
(currentMinX <= lineMinX && lineMinX <= currentMaxX) ||
(currentMinX <= lineMaxX && lineMaxX <= currentMaxX) ||
(lineMinX <= currentMinX && currentMinX <= lineMaxX) ||
(lineMinX <= currentMaxX && currentMaxX <= lineMaxX)
)
} else {
return (
(currentMinY <= lineMinY && lineMinY <= currentMaxY) ||
(currentMinY <= lineMaxY && lineMaxY <= currentMaxY) ||
(lineMinY <= currentMinY && currentMinY <= lineMaxY) ||
(lineMinY <= currentMaxY && currentMaxY <= lineMaxY)
)
}
})
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(checkEdges, lineEdge)
if (intersection) {
intersectBaseLine.push({ intersection, line })
}
})
/** 맞은편 라인 */
const oppositeLine = intersectBaseLine.reduce((prev, current) => {
const prevDistance = Big(prev.intersection.x)
.minus(Big(startPoint.x))
.pow(2)
.plus(Big(prev.intersection.y).minus(Big(startPoint.y)).pow(2))
.sqrt()
const currentDistance = Big(current.intersection.x)
.minus(Big(startPoint.x))
.pow(2)
.plus(Big(current.intersection.y).minus(Big(startPoint.y)).pow(2))
.sqrt()
return prevDistance < currentDistance ? prev : current
}, intersectBaseLine[0])
/** 맞은편 라인까지의 길이 = 전체 길이 - 현재라인의 길이 */
const oppositeSize = oppositeLine
? Big(oppositeLine.intersection.x)
.minus(Big(startPoint.x))
.pow(2)
.plus(Big(oppositeLine.intersection.y).minus(Big(startPoint.y)).pow(2))
.sqrt()
.minus(currentSize.div(2))
.round(1)
.toNumber()
: Infinity
/** 이전, 다음 라인중 길이가 짧은 길이*/
const lineMinSize =
prevBaseLine.size < nextBaseLine.size ? Big(prevBaseLine.size).div(10).toNumber() : Big(nextBaseLine.size).div(10).toNumber()
/** 마루의 길이는 이전 다음 라인중 짧은것의 길이와 현재라인부터 맞은편 라인까지의 길이에서 현재 라인의 길이를 뺀 것중 짧은 길이 */
ridgeSize = Big(Math.min(oppositeSize, lineMinSize))
}
}
if (ridgeSize.gt(0) && baseRidgeCount < getMaxRidge(baseLines.length)) {
const points = [
startPoint.x,
startPoint.y,
Big(startPoint.x)
.minus(ridgeSize.times(Math.sign(xVector)))
.toNumber(),
Big(startPoint.y)
.minus(ridgeSize.times(Math.sign(yVector)))
.toNumber(),
]
const oppositeHipPoints = []
const ridgeEdge = { vertex1: { x: points[0], y: points[1] }, vertex2: { x: points[2], y: points[3] } }
if (prevLine.attributes.type === LINE_TYPE.WALLLINE.EAVES && beforePrevLine.line.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
let hipVector = getHalfAngleVector(prevLine, beforePrevLine.line)
/** 이전 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const checkPoint = {
x: Big(prevLine.x1).plus(Big(hipVector.x).times(10)),
y: Big(prevLine.y1).plus(Big(hipVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(checkPoint)) {
hipVector = { x: -hipVector.x, y: -hipVector.y }
}
const hipEdge = {
vertex1: { x: prevLine.x1, y: prevLine.y1 },
vertex2: {
x: Big(prevLine.x1).plus(Big(hipVector.x).times(prevLine.attributes.planeSize)).toNumber(),
y: Big(prevLine.y1).plus(Big(hipVector.y).times(prevLine.attributes.planeSize)).toNumber(),
},
}
const intersection = edgesIntersection(ridgeEdge, hipEdge)
if (intersection) {
const size = Big(points[0] - intersection.x)
.abs()
.pow(2)
.plus(
Big(points[1] - intersection.y)
.abs()
.pow(2),
)
.sqrt()
.toNumber()
oppositeHipPoints.push({ x: intersection.x, y: intersection.y, size })
}
}
if (nextLine.attributes.type === LINE_TYPE.WALLLINE.EAVES && afterNextLine.line.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
let hipVector = getHalfAngleVector(nextLine, afterNextLine.line)
/** 이전 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const checkPoint = {
x: Big(nextLine.x1).plus(Big(hipVector.x).times(10)),
y: Big(nextLine.y1).plus(Big(hipVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(checkPoint)) {
hipVector = { x: -hipVector.x, y: -hipVector.y }
}
const hipEdge = {
vertex1: { x: nextLine.x2, y: nextLine.y2 },
vertex2: {
x: Big(nextLine.x2).plus(Big(hipVector.x).times(nextLine.attributes.planeSize)).toNumber(),
y: Big(nextLine.y2).plus(Big(hipVector.y).times(nextLine.attributes.planeSize)).toNumber(),
},
}
const intersection = edgesIntersection(ridgeEdge, hipEdge)
if (intersection) {
const size = Big(points[0] - intersection.x)
.abs()
.pow(2)
.plus(
Big(points[1] - intersection.y)
.abs()
.pow(2),
)
.sqrt()
.toNumber()
oppositeHipPoints.push({ x: intersection.x, y: intersection.y, size })
}
}
if (oppositeHipPoints.length > 0) {
const oppositeHipPoint = oppositeHipPoints.sort((a, b) => a.size - b.size)[0]
points[2] = oppositeHipPoint.x
points[3] = oppositeHipPoint.y
}
/** 동일 라인이 있는지 확인. */
if (
baseRidgeLines.filter((line) => {
const ridgeMinX = Math.min(points[0], points[2])
const ridgeMaxX = Math.max(points[0], points[2])
const ridgeMinY = Math.min(points[1], points[3])
const ridgeMaxY = Math.max(points[1], points[3])
const lineMinX = Math.min(line.x1, line.x2)
const lineMaxX = Math.max(line.x1, line.x2)
const lineMinY = Math.min(line.y1, line.y2)
const lineMaxY = Math.max(line.y1, line.y2)
return ridgeMinX === lineMinX && ridgeMaxX === lineMaxX && ridgeMinY === lineMinY && ridgeMaxY === lineMaxY
}).length > 0
) {
return
}
const ridgeLine = drawRidgeLine(points, canvas, roof, textMode)
if (
oppositeHipPoints.length === 0 &&
(gableType.includes(beforePrevLine.line.attributes.type) || gableType.includes(afterNextLine.line.attributes.type))
) {
baseGableRidgeLines.push(ridgeLine)
} else {
baseRidgeLines.push(ridgeLine)
}
baseRidgeCount = baseRidgeCount + 1
/** 포인트 조정*/
baseHipLines
.filter((line) => line.line === prevHipLine || line.line === nextHipLine)
.forEach((line) => {
line.x2 = points[0]
line.y2 = points[1]
line.line.set({ x2: points[0], y2: points[1] })
// line.line.fire('modified')
})
prevHipLine.x2 = points[0]
prevHipLine.y2 = points[1]
const prevSize = reCalculateSize(prevHipLine)
prevHipLine.attributes.planeSize = prevSize.planeSize
prevHipLine.attributes.actualSize = prevSize.actualSize
prevHipLine.fire('modified')
nextHipLine.x2 = points[0]
nextHipLine.y2 = points[1]
const nextSize = reCalculateSize(nextHipLine)
nextHipLine.attributes.planeSize = nextSize.planeSize
nextHipLine.attributes.actualSize = nextSize.actualSize
nextHipLine.fire('modified')
canvas.renderAll()
if (
oppositeHipPoints.length === 0 &&
(gableType.includes(beforePrevLine.line.attributes.type) || gableType.includes(afterNextLine.line.attributes.type))
) {
const oppositeLine = gableType.includes(beforePrevLine.line.attributes.type) ? beforePrevLine.line : afterNextLine.line
if (Math.sign(ridgeLine.x1 - ridgeLine.x2) === 0) {
const gableVector = Math.sign(ridgeLine.x1 - oppositeLine.x1)
const prevVector = ridgeLine.x1 === prevHipLine.x1 ? Math.sign(ridgeLine.x1 - prevHipLine.x2) : Math.sign(ridgeLine.x2 - prevHipLine.x1)
const firstHipLine = gableVector === prevVector ? prevHipLine : nextHipLine
const firstDegree =
gableVector === Math.sign(ridgeLine.x1 - prevLine.x1)
? getDegreeByChon(prevLine.attributes.pitch)
: getDegreeByChon(nextLine.attributes.pitch)
const oppositeRoofPoints = [
ridgeLine.x2,
ridgeLine.y2,
ridgeLine.x1 === firstHipLine.x1 ? firstHipLine.x2 : firstHipLine.x1,
ridgeLine.y2,
]
const oppositeRoofLine = drawHipLine(oppositeRoofPoints, canvas, roof, textMode, null, firstDegree, firstDegree)
baseHipLines.push({
x1: oppositeRoofLine.x1,
y1: oppositeRoofLine.y1,
x2: oppositeRoofLine.x2,
y2: oppositeRoofLine.y2,
line: oppositeRoofLine,
})
const connectRoofPoints = [oppositeRoofLine.x2, oppositeRoofLine.y2]
if (ridgeLine.x1 === firstHipLine.x1) {
connectRoofPoints.push(firstHipLine.x2, firstHipLine.y2)
} else {
connectRoofPoints.push(firstHipLine.x1, firstHipLine.y1)
}
const connectRoofLine = drawRoofLine(connectRoofPoints, canvas, roof, textMode)
baseHipLines.push({
x1: connectRoofLine.x1,
y1: connectRoofLine.y1,
x2: connectRoofLine.x2,
y2: connectRoofLine.y2,
line: connectRoofLine,
})
/** 다른 방향의 추녀마루 */
const secondHipLine = gableVector === prevVector ? nextHipLine : prevHipLine
const secondDegree =
gableVector === Math.sign(ridgeLine.x1 - prevLine.x1)
? getDegreeByChon(nextLine.attributes.pitch)
: getDegreeByChon(prevLine.attributes.pitch)
const intersections = []
const checkEdge = {
vertex1: { x: ridgeLine.x2, y: ridgeLine.y2 },
vertex2: { x: ridgeLine.x1 === secondHipLine.x1 ? secondHipLine.x2 : secondHipLine.x1, y: ridgeLine.y2 },
}
baseGableRidgeLines
.filter((ridge) => ridge !== ridgeLine)
.forEach((ridge) => {
const ridgeEdge = { vertex1: { x: ridge.x1, y: ridge.y1 }, vertex2: { x: ridge.x2, y: ridge.y2 } }
const intersection = edgesIntersection(ridgeEdge, checkEdge)
if (intersection && !intersections.includes(intersection)) {
const size = Big(intersection.x)
.minus(Big(ridgeLine.x2))
.pow(2)
.plus(Big(intersection.y).minus(Big(ridgeLine.y2)).pow(2))
.sqrt()
.toNumber()
intersections.push({ intersection, size, ridge })
}
})
intersections.sort((a, b) => a.size - b.size)
if (intersections.length > 0) {
const intersection = intersections[0].intersection
const intersectRidge = intersections[0].ridge
const oppositeRoofPoints = [ridgeLine.x2, ridgeLine.y2, intersection.x, intersection.y]
const oppositeRoofLine = drawHipLine(oppositeRoofPoints, canvas, roof, textMode, null, secondDegree, secondDegree)
baseHipLines.push({
x1: oppositeLine.x1,
y1: oppositeLine.y1,
x2: oppositeLine.x2,
y2: oppositeLine.y2,
line: oppositeRoofLine,
})
const ridgeVector = Math.sign(ridgeLine.y1 - ridgeLine.y2)
const connectRoofPoints = [oppositeRoofLine.x2, oppositeRoofLine.y2]
if (ridgeVector === Math.sign(oppositeRoofLine.y1 - intersectRidge.y2)) {
connectRoofPoints.push(intersectRidge.x2, intersectRidge.y2)
} else {
connectRoofPoints.push(intersectRidge.x1, intersectRidge.y1)
}
const connectRoofLine = drawRoofLine(connectRoofPoints, canvas, roof, textMode)
baseHipLines.push({
x1: connectRoofLine.x1,
y1: connectRoofLine.y1,
x2: connectRoofLine.x2,
y2: connectRoofLine.y2,
line: connectRoofLine,
})
}
} else {
const gableVector = Math.sign(ridgeLine.y1 - oppositeLine.y1)
const prevVector = ridgeLine.y1 === prevHipLine.y1 ? Math.sign(ridgeLine.y1 - prevHipLine.y2) : Math.sign(ridgeLine.y1 - prevHipLine.y1)
/** 마루와 박공지붕을 연결하기위한 추녀마루 라인 */
const firstHipLine = gableVector === prevVector ? prevHipLine : nextHipLine
const firstDegree =
gableVector === Math.sign(ridgeLine.y1 - prevLine.y1)
? getDegreeByChon(prevLine.attributes.pitch)
: getDegreeByChon(nextLine.attributes.pitch)
const oppositeRoofPoints = [
ridgeLine.x2,
ridgeLine.y2,
ridgeLine.x2,
ridgeLine.y1 === firstHipLine.y1 ? firstHipLine.y2 : firstHipLine.y1,
]
const oppositeRoofLine = drawHipLine(oppositeRoofPoints, canvas, roof, textMode, null, firstDegree, firstDegree)
baseHipLines.push({
x1: oppositeRoofLine.x1,
y1: oppositeRoofLine.y1,
x2: oppositeRoofLine.x2,
y2: oppositeRoofLine.y2,
line: oppositeRoofLine,
})
const connectRoofPoints = [oppositeRoofLine.x2, oppositeRoofLine.y2]
if (ridgeLine.y1 === firstHipLine.y1) {
connectRoofPoints.push(firstHipLine.x2, firstHipLine.y2)
} else {
connectRoofPoints.push(firstHipLine.x1, firstHipLine.y1)
}
const connectRoofLine = drawRoofLine(connectRoofPoints, canvas, roof, textMode)
baseHipLines.push({
x1: connectRoofLine.x1,
y1: connectRoofLine.y1,
x2: connectRoofLine.x2,
y2: connectRoofLine.y2,
line: connectRoofLine,
})
/** 다른 방향의 추녀마루 */
const secondHipLine = gableVector === prevVector ? nextHipLine : prevHipLine
const secondDegree =
gableVector === Math.sign(ridgeLine.y1 - prevLine.y1)
? getDegreeByChon(nextLine.attributes.pitch)
: getDegreeByChon(prevLine.attributes.pitch)
const intersections = []
const checkEdge = {
vertex1: { x: ridgeLine.x2, y: ridgeLine.y2 },
vertex2: { x: ridgeLine.x2, y: ridgeLine.y1 === secondHipLine.y1 ? secondHipLine.y2 : secondHipLine.y1 },
}
baseGableRidgeLines
.filter((ridge) => ridge !== ridgeLine)
.forEach((ridge) => {
const ridgeEdge = { vertex1: { x: ridge.x1, y: ridge.y1 }, vertex2: { x: ridge.x2, y: ridge.y2 } }
const intersection = edgesIntersection(ridgeEdge, checkEdge)
if (intersection && !intersections.includes(intersection)) {
const size = Big(intersection.x)
.minus(Big(ridgeLine.x2))
.pow(2)
.plus(Big(intersection.y).minus(Big(ridgeLine.y2)).pow(2))
.sqrt()
.toNumber()
intersections.push({ intersection, size, ridge })
}
})
intersections.sort((a, b) => a.size - b.size)
if (intersections.length > 0) {
const intersection = intersections[0].intersection
const intersectRidge = intersections[0].ridge
const oppositeRoofPoints = [ridgeLine.x2, ridgeLine.y2, intersection.x, intersection.y]
const oppositeRoofLine = drawHipLine(oppositeRoofPoints, canvas, roof, textMode, null, secondDegree, secondDegree)
baseHipLines.push({
x1: oppositeLine.x1,
y1: oppositeLine.y1,
x2: oppositeLine.x2,
y2: oppositeLine.y2,
line: oppositeRoofLine,
})
const ridgeVector = Math.sign(ridgeLine.x1 - ridgeLine.x2)
const connectRoofPoints = [oppositeRoofLine.x2, oppositeRoofLine.y2]
if (ridgeVector === Math.sign(oppositeRoofLine.x1 - intersectRidge.x2)) {
connectRoofPoints.push(intersectRidge.x2, intersectRidge.y2)
} else {
connectRoofPoints.push(intersectRidge.x1, intersectRidge.y1)
}
const connectRoofLine = drawRoofLine(connectRoofPoints, canvas, roof, textMode)
baseHipLines.push({
x1: connectRoofLine.x1,
y1: connectRoofLine.y1,
x2: connectRoofLine.x2,
y2: connectRoofLine.y2,
line: connectRoofLine,
})
}
}
}
}
}
})
/** 중복제거 */
baseRidgeLines.forEach((ridge) => {
baseRidgeLines
.filter((ridge2) => ridge !== ridge2)
.forEach((ridge2) => {
let overlap = segmentsOverlap(ridge, ridge2)
if (overlap) {
roof.canvas.remove(ridge)
roof.canvas.remove(ridge2)
baseRidgeLines = baseRidgeLines.filter((r) => r !== ridge && r !== ridge2)
baseRidgeCount = baseRidgeCount - 2
let x1 = Math.min(ridge.x1, ridge2.x1, ridge.x2, ridge2.x2)
let x2 = Math.max(ridge.x1, ridge2.x1, ridge.x2, ridge2.x2)
let y1 = Math.min(ridge.y1, ridge2.y1, ridge.y2, ridge2.y2)
let y2 = Math.max(ridge.y1, ridge2.y1, ridge.y2, ridge2.y2)
const newRidge = drawRidgeLine([x1, y1, x2, y2], canvas, roof, textMode)
baseRidgeLines.push(newRidge)
baseRidgeCount = baseRidgeCount + 1
}
})
})
/** ㄴ 모양 처마에 추녀마루를 그린다. */
drawEavesSecondLines.forEach((current) => {
const { currentBaseLine, prevBaseLine, nextBaseLine } = current
const currentLine = currentBaseLine.line
const prevLine = prevBaseLine.line
const nextLine = nextBaseLine.line
let { x1, x2, y1, y2 } = currentBaseLine
/** 이전 라인의 경사 */
const prevDegree = getDegreeByChon(prevLine.attributes.pitch)
/** 다음 라인의 경사 */
const currentDegree = getDegreeByChon(currentLine.attributes.pitch)
/** 이전, 다음라인의 사잇각의 vector를 구한다. */
let prevVector = getHalfAngleVector(prevLine, currentLine)
let nextVector = getHalfAngleVector(currentLine, nextLine)
let prevHipVector = { x: prevVector.x, y: prevVector.y }
let nextHipVector = { x: nextVector.x, y: nextVector.y }
/** 각 라인의 흐름 방향을 확인한다. */
const currentAngle = calculateAngle(currentLine.startPoint, currentLine.endPoint)
/** 현재 라인의 길이 추녀마루 길이의 기준이 된다. */
let hipLength = Big(x2)
.minus(Big(x1))
.plus(Big(y2).minus(Big(y1)))
.abs()
/** 이전 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const prevCheckPoint = {
x: Big(x1).plus(Big(prevHipVector.x).times(10)),
y: Big(y1).plus(Big(prevHipVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(prevCheckPoint)) {
prevHipVector = { x: -prevHipVector.x, y: -prevHipVector.y }
}
/** 다음 라인과의 사이 추녀마루의 각도를 확인한다, 각도가 지붕안쪽으로 향하지 않을때 반대로 처리한다.*/
const nextCheckPoint = {
x: Big(x2).plus(Big(nextHipVector.x).times(10)),
y: Big(y2).plus(Big(nextHipVector.y).times(10)),
}
if (!checkWallPolygon.inPolygon(nextCheckPoint)) {
nextHipVector = { x: -nextHipVector.x, y: -nextHipVector.y }
}
let prevHipLine, nextHipLine
/** 이전라인과의 연결지점에 추녀마루를 그린다. */
if (baseHipLines.filter((line) => line.x1 === x1 && line.y1 === y1).length === 0 && prevLine.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
let prevEndPoint = {
x: Big(x1).plus(Big(prevHipVector.x).times(hipLength)).round(2),
y: Big(y1).plus(Big(prevHipVector.y).times(hipLength)).round(2),
}
const prevEndEdge = { vertex1: { x: x1, y: y1 }, vertex2: prevEndPoint }
const intersectBaseLine = []
baseLines
.filter((line) => line !== currentLine && line !== prevLine && line !== nextLine)
.filter((line) => {
if (currentAngle === 0 || currentAngle === 180) {
return Math.sign(line.y1 - y1) === nextHipVector.y || Math.sign(line.y2 - y1) === nextHipVector.y
} else {
return Math.sign(line.x1 - x1) === nextHipVector.x || Math.sign(line.x2 - x1) === nextHipVector.x
}
})
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(prevEndEdge, lineEdge)
if (intersection && Math.sign(intersection.x - x1) === nextHipVector.x && Math.sign(intersection.y - y1) === nextHipVector.y) {
const size = Big(intersection.x - x1)
.abs()
.pow(2)
.plus(
Big(intersection.y - y1)
.pow(2)
.abs(),
)
.sqrt()
if (size.gt(0)) {
intersectBaseLine.push({
intersection,
size,
})
}
}
})
const intersectBase = intersectBaseLine.reduce((prev, current) => {
return prev.size < current.size ? prev : current
}, intersectBaseLine[0])
if (intersectBase) {
prevEndPoint = {
x: Big(x1)
.plus(Big(nextHipVector.x).times(intersectBase.size.div(2)))
.round(2),
y: Big(y1)
.plus(Big(nextHipVector.y).times(intersectBase.size.div(2)))
.round(2),
}
}
const intersectRidgeLine = []
baseRidgeLines.forEach((line) => {
const intersection = edgesIntersection(
{ vertex1: { x: x1, y: y1 }, vertex2: prevEndPoint },
{ vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } },
)
if (intersection && !intersection.isIntersectionOutside) {
intersectRidgeLine.push({
intersection,
distance: Big(intersection.x)
.minus(Big(x1))
.abs()
.pow(2)
.plus(Big(intersection.y).minus(Big(y1)).pow(2).abs())
.sqrt(),
})
}
})
const intersectRidge = intersectRidgeLine.reduce((prev, current) => (prev.distance < current.distance ? prev : current), intersectRidgeLine[0])
if (intersectRidge) {
prevEndPoint.x = Big(intersectRidge.intersection.x).round(1)
prevEndPoint.y = Big(intersectRidge.intersection.y).round(1)
}
const xVector = Math.sign(Big(prevEndPoint.x).minus(Big(x1)).neg().toNumber())
const yVector = Math.sign(Big(prevEndPoint.y).minus(Big(y1)).neg().toNumber())
/** 지붕 선까지의 곂침에 따른 길이를 파악하기 위한 scale*/
let scale = Big(currentLine.attributes.offset).pow(2).plus(Big(prevLine.attributes.offset).pow(2)).sqrt()
scale = scale.eq(0) ? Big(1) : scale
/** scale 만큼 추녀마루를 늘려서 겹치는 포인트를 확인한다. */
const hipEdge = {
vertex1: { x: Big(x1).plus(scale.times(xVector)).toNumber(), y: Big(y1).plus(scale.times(yVector)).toNumber() },
vertex2: prevEndPoint,
}
let intersectPoints = []
/** 외벽선에서 추녀 마루가 겹치는 경우에 대한 확인*/
roof.lines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(hipEdge, lineEdge)
if (
intersection &&
!intersection.isIntersectionOutside &&
Math.sign(prevEndPoint.x - x1) === Math.sign(prevEndPoint.x - intersection.x) &&
Math.sign(prevEndPoint.y - y1) === Math.sign(prevEndPoint.y - intersection.y)
) {
const intersectSize = prevEndPoint.x
.minus(Big(intersection.x))
.abs()
.pow(2)
.plus(prevEndPoint.y.minus(Big(intersection.y)).pow(2).abs())
.sqrt()
.toNumber()
intersectPoints.push({
intersection,
size: intersectSize,
})
}
})
intersectPoints = intersectPoints.reduce((prev, current) => {
return prev.size < current.size ? prev : current
}, intersectPoints[0])
/** 겹치는 외벽선이 있을때 추녀마루를 외벽선 까지 늘려서 수정*/
if (intersectPoints && intersectPoints.intersection) {
prevHipLine = drawHipLine(
[intersectPoints.intersection.x, intersectPoints.intersection.y, prevEndPoint.x.toNumber(), prevEndPoint.y.toNumber()],
canvas,
roof,
textMode,
null,
prevDegree,
currentDegree,
)
baseHipLines.push({ x1, y1, x2: prevEndPoint.x.toNumber(), y2: prevEndPoint.y.toNumber(), line: prevHipLine })
}
}
/** 다음라인과의 연결지점에 추녀마루를 그린다. */
if (baseHipLines.filter((line) => line.x1 === x2 && line.y1 === y2).length === 0 && nextLine.attributes.type === LINE_TYPE.WALLLINE.EAVES) {
let nextEndPoint = {
x: Big(x2).plus(Big(nextHipVector.x).times(hipLength)).round(2),
y: Big(y2).plus(Big(nextHipVector.y).times(hipLength)).round(2),
}
const nextEndEdge = {
vertex1: { x: x2, y: y2 },
vertex2: nextEndPoint,
}
const intersectBaseLine = []
baseLines
.filter((line) => line !== currentLine && line !== prevLine && line !== nextLine)
.filter((line) => {
if (currentAngle === 0 || currentAngle === 180) {
return Math.sign(line.y1 - y1) === nextHipVector.y || Math.sign(line.y2 - y1) === nextHipVector.y
} else {
return Math.sign(line.x1 - x1) === nextHipVector.x || Math.sign(line.x2 - x1) === nextHipVector.x
}
})
.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(nextEndEdge, lineEdge)
if (intersection && Math.sign(intersection.x - x2) === nextHipVector.x && Math.sign(intersection.y - y2) === nextHipVector.y) {
const size = Big(intersection.x - x2)
.abs()
.pow(2)
.plus(
Big(intersection.y - y2)
.abs()
.pow(2),
)
.sqrt()
if (size.gt(0)) {
intersectBaseLine.push({
intersection,
size,
})
}
}
})
const intersectBase = intersectBaseLine.reduce((prev, current) => {
return prev.size.lt(current.size) ? prev : current
}, intersectBaseLine[0])
if (intersectBase) {
const size = Big(getAdjacent(intersectBase.size))
nextEndPoint = {
x: Big(x2)
.plus(Big(nextHipVector.x).times(size.div(2)))
.round(2),
y: Big(y2)
.plus(Big(nextHipVector.y).times(size.div(2)))
.round(2),
}
}
const intersectRidgeLine = []
baseRidgeLines.forEach((line) => {
const intersection = edgesIntersection(
{ vertex1: { x: x2, y: y2 }, vertex2: nextEndPoint },
{ vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } },
)
if (
intersection &&
((line.x1 <= intersection.x && line.x2 >= intersection.x && line.y1 <= intersection.y && line.y2 >= intersection.y) ||
(line.x2 <= intersection.x && line.x1 >= intersection.x && line.y2 <= intersection.y && line.y1 >= intersection.y))
) {
intersectRidgeLine.push({
intersection,
distance: Big(intersection.x)
.minus(Big(x1))
.pow(2)
.plus(Big(intersection.y).minus(Big(y1)).pow(2))
.sqrt(),
})
}
})
const intersectRidge = intersectRidgeLine.reduce((prev, current) => (prev.distance < current.distance ? prev : current), intersectRidgeLine[0])
if (intersectRidge) {
nextEndPoint.x = Big(intersectRidge.intersection.x).round(1)
nextEndPoint.y = Big(intersectRidge.intersection.y).round(1)
}
const xVector = Math.sign(Big(nextEndPoint.x).minus(Big(x2)).neg().toNumber())
const yVector = Math.sign(Big(nextEndPoint.y).minus(Big(y2)).neg().toNumber())
let scale = Big(currentLine.attributes.offset).pow(2).plus(Big(nextLine.attributes.offset).pow(2)).sqrt()
scale = scale.eq(0) ? Big(1) : scale
const hipEdge = {
vertex1: { x: Big(x2).plus(scale.times(xVector)).toNumber(), y: Big(y2).plus(scale.times(yVector)).toNumber() },
vertex2: nextEndPoint,
}
let intersectPoints = []
roof.lines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(hipEdge, lineEdge)
if (
intersection &&
!intersection.isIntersectionOutside &&
Math.sign(nextEndPoint.x - x2) === Math.sign(nextEndPoint.x - intersection.x) &&
Math.sign(nextEndPoint.y - y2) === Math.sign(nextEndPoint.y - intersection.y)
) {
const intersectSize = nextEndPoint.x
.minus(Big(intersection.x))
.pow(2)
.plus(nextEndPoint.y.minus(Big(intersection.y)).pow(2))
.abs()
.sqrt()
.toNumber()
intersectPoints.push({
intersection,
size: intersectSize,
})
}
})
intersectPoints = intersectPoints.reduce((prev, current) => {
return prev.size < current.size ? prev : current
}, intersectPoints[0])
if (intersectPoints && intersectPoints.intersection) {
nextHipLine = drawHipLine(
[intersectPoints.intersection.x, intersectPoints.intersection.y, nextEndPoint.x.toNumber(), nextEndPoint.y.toNumber()],
canvas,
roof,
textMode,
null,
prevDegree,
currentDegree,
)
baseHipLines.push({
x1: x2,
y1: y2,
x2: nextEndPoint.x.toNumber(),
y2: nextEndPoint.y.toNumber(),
line: nextHipLine,
})
}
}
})
/** baseHipLine 이 ridge에 붙지 않은 경우 확인 */
baseHipLines.forEach((hipLine) => {
const ridgeCount = baseRidgeLines.filter(
(ridgeLine) => (hipLine.x2 === ridgeLine.x1 && hipLine.y2 === ridgeLine.y1) || (hipLine.x2 === ridgeLine.x2 && hipLine.y2 === ridgeLine.y2),
).length
if (ridgeCount === 0) {
const hipXVector = Big(hipLine.x2).minus(hipLine.x1)
const hipYVector = Big(hipLine.y2).minus(hipLine.y1)
const hipSize = hipXVector.abs().pow(2).plus(hipYVector.abs().pow(2)).sqrt()
const intersectRidgePoints = []
const hipLineEdge = { vertex1: { x: hipLine.x1, y: hipLine.y1 }, vertex2: { x: hipLine.x2, y: hipLine.y2 } }
baseRidgeLines.forEach((ridgeLine) => {
const ridgeLineEdge = {
vertex1: { x: ridgeLine.x1, y: ridgeLine.y1 },
vertex2: { x: ridgeLine.x2, y: ridgeLine.y2 },
}
const intersection = edgesIntersection(hipLineEdge, ridgeLineEdge)
if (intersection) {
const intersectXVector = Big(intersection.x).minus(Big(hipLine.x1))
const intersectYVector = Big(intersection.y).minus(Big(hipLine.y1))
const intersectSize = intersectXVector.pow(2).plus(intersectYVector.pow(2)).sqrt()
if (!intersection.isIntersectionOutside) {
intersectRidgePoints.push({
x: intersection.x,
y: intersection.y,
size: intersectSize,
})
} else if (
((intersection.x === ridgeLine.x1 && intersection.y === ridgeLine.y1) ||
(intersection.x === ridgeLine.x2 && intersection.y === ridgeLine.y2)) &&
Math.sign(hipXVector.toNumber()) === Math.sign(intersectXVector.toNumber()) &&
Math.sign(hipYVector.toNumber()) === Math.sign(intersectYVector.toNumber()) &&
intersectSize.gt(0) &&
intersectSize.lt(hipSize)
) {
intersectRidgePoints.push({
x: intersection.x,
y: intersection.y,
size: intersectSize,
})
}
}
})
intersectRidgePoints.sort((prev, current) => prev.size.minus(current.size).toNumber())
if (intersectRidgePoints.length > 0) {
hipLine.x2 = intersectRidgePoints[0].x
hipLine.y2 = intersectRidgePoints[0].y
hipLine.line.set({ x2: intersectRidgePoints[0].x, y2: intersectRidgePoints[0].y })
const hipSize = reCalculateSize(hipLine.line)
hipLine.line.attributes.planeSize = hipSize.planeSize
hipLine.line.attributes.actualSize = hipSize.actualSize
hipLine.line.fire('modified')
}
}
})
/** 지붕선에 맞닫지 않은 부분을 확인하여 처리 한다.*/
/** 1. 그려진 마루 중 추녀마루가 부재하는 경우를 판단. 부재는 연결된 라인이 홀수인 경우로 판단한다.*/
let unFinishedRidge = []
baseRidgeLines.forEach((current) => {
let checkPoint = [
{ x: current.x1, y: current.y1, line: current, cnt: 0, onRoofLine: false },
{ x: current.x2, y: current.y2, line: current, cnt: 0, onRoofLine: false },
]
baseHipLines.forEach((line) => {
if ((line.x1 === current.x1 && line.y1 === current.y1) || (line.x2 === current.x1 && line.y2 === current.y1)) {
checkPoint[0].cnt = checkPoint[0].cnt + 1
}
if ((line.x1 === current.x2 && line.y1 === current.y2) || (line.x2 === current.x2 && line.y2 === current.y2)) {
checkPoint[1].cnt = checkPoint[1].cnt + 1
}
})
/** 마루의 포인트가 지붕선 위에 있는경우는 제외 (케라바 등)*/
roof.lines.forEach((line) => {
if (
line.x1 === line.x2 &&
checkPoint[0].x === line.x1 &&
((line.y1 <= checkPoint[0].y && line.y2 >= checkPoint[0].y) || (line.y1 >= checkPoint[0].y && line.y2 <= checkPoint[0].y))
) {
checkPoint[0].onRoofLine = true
}
if (
line.y1 === line.y2 &&
checkPoint[0].y === line.y1 &&
((line.x1 <= checkPoint[0].x && line.x2 >= checkPoint[0].x) || (line.x1 >= checkPoint[0].x && line.x2 <= checkPoint[0].x))
) {
checkPoint[0].onRoofLine = true
}
if (
line.x1 === line.x2 &&
checkPoint[1].x === line.x1 &&
((line.y1 <= checkPoint[1].y && line.y2 >= checkPoint[1].y) || (line.y1 >= checkPoint[1].y && line.y2 <= checkPoint[1].y))
) {
checkPoint[1].onRoofLine = true
}
if (
line.y1 === line.y2 &&
checkPoint[1].y === line.y1 &&
((line.x1 <= checkPoint[1].x && line.x2 >= checkPoint[1].x) || (line.x1 >= checkPoint[1].x && line.x2 <= checkPoint[1].x))
) {
checkPoint[1].onRoofLine = true
}
})
if ((checkPoint[0].cnt === 0 || checkPoint[0].cnt % 2 !== 0) && !checkPoint[0].onRoofLine) {
unFinishedRidge.push(checkPoint[0])
}
if ((checkPoint[1].cnt === 0 || checkPoint[1].cnt % 2 !== 0) && !checkPoint[1].onRoofLine) {
unFinishedRidge.push(checkPoint[1])
}
})
/** 2. 그려진 추녀마루 중 완성되지 않은 것을 찾는다. 완성되지 않았다는 것은 연결된 포인트가 홀수인 경우로 판단한다.*/
const findUnFinishedPoints = (baseHipLines) => {
let unFinishedPoint = []
baseHipLines.forEach((current) => {
let checkPoint = [
{ x: current.x1, y: current.y1, checked: true, line: current.line },
{ x: current.x2, y: current.y2, checked: true, line: current.line },
]
baseLines.forEach((line) => {
if ((line.x1 === current.x1 && line.y1 === current.y1) || (line.x2 === current.x1 && line.y2 === current.y1)) {
checkPoint[0].checked = false
}
if ((line.x1 === current.x2 && line.y1 === current.y2) || (line.x2 === current.x2 && line.y2 === current.y2)) {
checkPoint[1].checked = false
}
})
const samePoints = []
checkPoint
.filter((point) => point.checked)
.forEach((point) => {
baseHipLines.forEach((line) => {
if (line.x1 === point.x && line.y1 === point.y) {
samePoints.push({ x: point.x, y: point.y, line: line })
}
if (line.x2 === point.x && line.y2 === point.y) {
samePoints.push({ x: point.x, y: point.y, line: line })
}
})
})
if (samePoints.length > 0 && samePoints.length % 2 !== 0) {
unFinishedPoint.push(samePoints[0])
}
})
return unFinishedPoint
}
let unFinishedPoint = findUnFinishedPoints(baseHipLines)
/**3. 라인이 부재인 마루의 모자란 라인을 찾는다. 라인은 그려진 추녀마루 중에 완성되지 않은 추녀마루와 확인한다.*/
/**3-1 라인을 그릴때 각도가 필요하기 때문에 각도를 구한다. 각도는 전체 지부의 각도가 같다면 하나로 처리 */
let degreeAllLine = []
baseLines
.filter((line) => eavesType.includes(line.attributes.type))
.forEach((line) => {
const pitch = line.attributes.pitch
degreeAllLine.push(getDegreeByChon(pitch))
})
let currentDegree, prevDegree
degreeAllLine = [...new Set(degreeAllLine)]
currentDegree = degreeAllLine[0]
if (degreeAllLine.length === 1) {
prevDegree = currentDegree
} else {
prevDegree = degreeAllLine[1]
}
/** 라인이 부재한 마루에 라인을 찾아 그린다.*/
unFinishedRidge.forEach((current) => {
let checkPoints = []
unFinishedPoint
.filter(
(point) =>
point.x !== current.x &&
point.y !== current.y &&
Big(point.x)
.minus(Big(current.x))
.abs()
.minus(Big(point.y).minus(Big(current.y)).abs())
.abs()
.lt(1),
)
.forEach((point) => {
const pointEdge = { vertex1: { x: point.x, y: point.y }, vertex2: { x: current.x, y: current.y } }
let isIntersection = false
baseLines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(pointEdge, lineEdge)
if (intersection && !intersection.isIntersectionOutside) {
isIntersection = true
}
})
if (!isIntersection) {
checkPoints.push({
point,
size: Big(point.x)
.minus(Big(current.x))
.abs()
.pow(2)
.plus(Big(point.y).minus(Big(current.y)).abs().pow(2))
.sqrt(),
})
}
})
if (checkPoints.length > 0) {
checkPoints.sort((a, b) => a.size - b.size)
const maxCnt = Big(2).minus(Big(current.cnt)).toNumber()
for (let i = 0; i < maxCnt; i++) {
const checkPoint = checkPoints[i]
if (checkPoint) {
let point = [checkPoint.point.x, checkPoint.point.y, current.x, current.y]
let hipBasePoint
baseHipLines.forEach((line) => {
const checkAngel1 = calculateAngle({ x: point[0], y: point[1] }, { x: point[2], y: point[3] })
const checkAngel2 = calculateAngle(
{ x: line.line.x1, y: line.line.y1 },
{
x: line.line.x2,
y: line.line.y2,
},
)
const checkPointCnt = checkPoints.filter((point) => point.point.x === checkPoint.point.x && point.point.y === checkPoint.point.y).length
const isConnectLine =
((line.line.x1 === point[0] && line.line.y1 === point[1]) || (line.line.x2 === point[0] && line.line.y2 === point[1])) &&
checkAngel1 === checkAngel2
const isOverlap = segmentsOverlap(line.line, { x1: point[0], y1: point[1], x2: point[2], y2: point[3] })
const isSameLine =
(point[0] === line.x2 && point[1] === line.y2 && point[2] === line.x1 && point[3] === line.y1) ||
(point[0] === line.x1 && point[1] === line.y1 && point[2] === line.x2 && point[3] === line.y2)
if (checkPointCnt === 1 && (isConnectLine || isOverlap || isSameLine)) {
/** 겹치는 추녀마루와 하나의 선으로 변경*/
const mergePoint = [
{ x: point[0], y: point[1] },
{ x: point[2], y: point[3] },
{ x: line.line.x1, y: line.line.y1 },
{ x: line.line.x2, y: line.line.y2 },
]
/** baseHipLines도 조정*/
mergePoint.sort((a, b) => a.x - b.x)
hipBasePoint = { x1: line.x1, y1: line.y1, x2: line.x2, y2: line.y2 }
point = [mergePoint[0].x, mergePoint[0].y, mergePoint[3].x, mergePoint[3].y]
const theta = Big(Math.acos(Big(line.line.attributes.planeSize).div(line.line.attributes.actualSize)))
.times(180)
.div(Math.PI)
.round(1)
prevDegree = theta.toNumber()
currentDegree = theta.toNumber()
canvas.remove(line.line)
baseHipLines = baseHipLines.filter((baseLine) => baseLine.line !== line.line)
}
})
const hipLine = drawHipLine(point, canvas, roof, textMode, null, prevDegree, currentDegree)
if (hipBasePoint) {
baseHipLines.push({ x1: hipBasePoint.x1, y1: hipBasePoint.y1, x2: point[2], y2: point[3], line: hipLine })
} else {
baseHipLines.push({ x1: point[0], y1: point[1], x2: point[2], y2: point[3], line: hipLine })
}
current.cnt = current.cnt + 1
}
}
}
/** 라인이 다 그려지지 않은 경우 */
if (current.cnt % 2 !== 0) {
let basePoints = baseLinePoints
.filter((point) =>
Big(point.x)
.minus(Big(current.x))
.abs()
.minus(Big(point.y).minus(Big(current.y)).abs())
.abs()
.lt(1),
)
.filter((point) => {
const pointEdge = { vertex1: { x: current.x, y: current.y }, vertex2: { x: point.x, y: point.y } }
const intersectPoints = []
baseLines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(pointEdge, lineEdge)
if (intersection && !intersection.isIntersectionOutside) {
intersectPoints.push(intersection)
}
})
return (
!intersectPoints.filter(
(intersect) => !(Big(intersect.x).minus(Big(point.x)).abs().lt(1) && Big(intersect.y).minus(Big(point.y)).abs().lt(1)),
).length > 0
)
})
/** hip을 그리기 위한 기본 길이*/
let hipSize = Big(0)
if (basePoints.length > 0) {
basePoints.sort((a, b) => {
const aSize = Big(a.x)
.minus(Big(current.x))
.abs()
.pow(2)
.plus(Big(a.y).minus(Big(current.y)).abs().pow(2))
.sqrt()
const bSize = Big(b.x)
.minus(Big(current.x))
.abs()
.pow(2)
.plus(Big(b.y).minus(Big(current.y)).abs().pow(2))
.sqrt()
return aSize - bSize
})
const baseHips = baseHipLines.filter((line) => line.x1 === basePoints[0].x && line.y1 === basePoints[0].y)
if (baseHips.length > 0) {
hipSize = Big(baseHips[0].line.attributes.planeSize)
}
}
if (hipSize.eq(0)) {
const ridge = current.line
basePoints = baseHipLines
.filter((line) => (line.x2 === ridge.x1 && line.y2 === ridge.y1) || (line.x2 === ridge.x2 && line.y2 === ridge.y2))
.filter((line) => baseLines.filter((baseLine) => baseLine.x1 === line.x1 && baseLine.y1 === line.y1).length > 0)
basePoints.sort((a, b) => a.line.attributes.planeSize - b.line.attributes.planeSize)
hipSize = Big(basePoints[0].line.attributes.planeSize)
}
hipSize = hipSize.pow(2).div(2).sqrt().round().div(10).toNumber()
/** 현재 라인을 기준으로 45, 135, 225, 315 방향을 확인하기 위한 좌표, hip은 45도 방향으로만 그린다. */
const checkEdge45 = {
vertex1: { x: current.x, y: current.y },
vertex2: { x: current.x + hipSize, y: current.y - hipSize },
}
const checkEdge135 = {
vertex1: { x: current.x, y: current.y },
vertex2: { x: current.x + hipSize, y: current.y + hipSize },
}
const checkEdge225 = {
vertex1: { x: current.x, y: current.y },
vertex2: { x: current.x - hipSize, y: current.y + hipSize },
}
const checkEdge315 = {
vertex1: { x: current.x, y: current.y },
vertex2: { x: current.x - hipSize, y: current.y - hipSize },
}
let intersectPoints = []
let notIntersect45 = true,
notIntersect135 = true,
notIntersect225 = true,
notIntersect315 = true
baseLines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection45 = edgesIntersection(checkEdge45, lineEdge)
const intersection135 = edgesIntersection(checkEdge135, lineEdge)
const intersection225 = edgesIntersection(checkEdge225, lineEdge)
const intersection315 = edgesIntersection(checkEdge315, lineEdge)
if (intersection45 && !intersection45.isIntersectionOutside) {
intersectPoints.push(intersection45)
notIntersect45 = false
}
if (intersection135 && !intersection135.isIntersectionOutside) {
intersectPoints.push(intersection135)
notIntersect135 = false
}
if (intersection225 && !intersection225.isIntersectionOutside) {
intersectPoints.push(intersection225)
notIntersect225 = false
}
if (intersection315 && !intersection315.isIntersectionOutside) {
intersectPoints.push(intersection315)
notIntersect315 = false
}
})
/** baseLine과 교차하지 않는 포인트를 추가한다.*/
if (notIntersect45) {
intersectPoints.push(checkEdge45.vertex2)
}
if (notIntersect135) {
intersectPoints.push(checkEdge135.vertex2)
}
if (notIntersect225) {
intersectPoints.push(checkEdge225.vertex2)
}
if (notIntersect315) {
intersectPoints.push(checkEdge315.vertex2)
}
/** baseLine의 각 좌표와 교차하는 경우로 한정*/
intersectPoints = intersectPoints.filter((is) => baseLinePoints.filter((point) => point.x === is.x && point.y === is.y).length > 0)
/** baseLine과 교차하는 좌표의 경우 이미 그려진 추녀마루가 존재한다면 제외한다. */
intersectPoints = intersectPoints.filter((point) => baseHipLines.filter((hip) => hip.x1 === point.x && hip.y1 === point.y).length === 0)
/** 중복제거 */
intersectPoints = intersectPoints.filter((point, index, self) => index === self.findIndex((p) => p.x === point.x && p.y === point.y))
intersectPoints.forEach((is) => {
const points = [current.x, current.y, is.x, is.y]
/** 추녀마루의 연결점이 처마라인이 아닌경우 return */
let hasGable = false
baseLines
.filter((line) => (line.x1 === points[2] && line.y1 === points[3]) || (line.x2 === points[2] && line.y2 === points[3]))
.forEach((line) => {
if (!eavesType.includes(line.attributes.type)) {
hasGable = true
}
})
if (hasGable) return
const pointEdge = { vertex1: { x: points[0], y: points[1] }, vertex2: { x: points[2], y: points[3] } }
const vectorX = Math.sign(Big(points[2]).minus(Big(points[0])).toNumber())
const vectorY = Math.sign(Big(points[3]).minus(Big(points[1])).toNumber())
const roofIntersections = []
roof.lines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(pointEdge, lineEdge)
if (intersection) {
const vectorIntersectionX = Math.sign(Big(intersection.x).minus(Big(points[0])).toNumber())
const vectorIntersectionY = Math.sign(Big(intersection.y).minus(Big(points[1])).toNumber())
if (vectorIntersectionX === vectorX && vectorIntersectionY === vectorY) {
roofIntersections.push({
x: intersection.x,
y: intersection.y,
size: calcLinePlaneSize({ x1: points[0], y1: points[1], x2: intersection.x, y2: intersection.y }),
})
}
}
})
roofIntersections.sort((a, b) => a.size - b.size)
const hipLine = drawHipLine(
[points[0], points[1], roofIntersections[0].x, roofIntersections[0].y],
canvas,
roof,
textMode,
null,
prevDegree,
currentDegree,
)
baseHipLines.push({ x1: points[0], y1: points[1], x2: points[2], y2: points[3], line: hipLine })
current.cnt = current.cnt + 1
})
}
})
/** hip이 짝수개가 맞다아있는데 마루와 연결되지 않는 포인트를 찾는다. 그려지지 않은 마루를 찾기 위함.*/
let noRidgeHipPoints = baseHipLines
.filter((current) => current.x1 !== current.x2 && current.y1 !== current.y2)
.filter((current) => {
const lines = baseHipLines
.filter((line) => line !== current)
.filter((line) => (line.x1 === current.x2 && line.y1 === current.y2) || (line.x2 === current.x2 && line.y2 === current.y2))
return lines.length !== 0 && lines.length % 2 !== 0
})
.filter(
(current) =>
baseRidgeLines.filter((line) => (line.x1 === current.x2 && line.y1 === current.y2) || (line.x2 === current.x2 && line.y2 === current.y2))
.length === 0 &&
baseGableRidgeLines.filter((line) => (line.x1 === current.x2 && line.y1 === current.y2) || (line.x2 === current.x2 && line.y2 === current.y2))
.length === 0,
)
noRidgeHipPoints.forEach((current) => {
const orthogonalPoints = noRidgeHipPoints.filter((point) => {
if (point !== current && ((current.x2 === point.x2 && current.y2 !== point.y2) || (current.x2 !== point.x2 && current.y2 === point.y2))) {
return true
}
})
/** 직교 하는 포인트가 존재 할때 마루를 그린다. */
if (orthogonalPoints.length > 0 && baseRidgeCount < getMaxRidge(baseLines.length)) {
baseRidgeCount = baseRidgeCount + 1
const points = [current.x2, current.y2, orthogonalPoints[0].x2, orthogonalPoints[0].y2]
const ridgeLine = drawRidgeLine(points, canvas, roof, textMode)
baseRidgeLines.push(ridgeLine)
}
})
/** 중복제거*/
baseRidgeLines.forEach((current) => {
const sameRidge = baseRidgeLines.filter(
(line) =>
line !== current &&
((line.x1 === current.x1 && line.y1 === current.y1 && line.x2 === current.x2 && line.y2 === current.y2) ||
(line.x1 === current.x2 && line.y1 === current.y2 && line.x2 === current.x1 && line.y2 === current.y1)),
)
if (sameRidge.length > 0) {
sameRidge.forEach((duplicateLine) => {
const index = baseRidgeLines.indexOf(duplicateLine)
if (index !== -1) {
baseRidgeLines.splice(index, 1)
}
canvas.remove(duplicateLine)
})
}
})
/** 직교 하는 포인트가 없는 경우 남은 포인트 처리 */
const checkEdgeLines = []
noRidgeHipPoints.forEach((current) => {
noRidgeHipPoints
.filter((point) => point !== current)
.forEach((point) => {
checkEdgeLines.push(
{ vertex1: { x: current.x2, y: current.y2 }, vertex2: { x: current.x2, y: point.y2 } },
{ vertex1: { x: current.x2, y: point.y2 }, vertex2: { x: point.x2, y: point.y2 } },
{ vertex1: { x: point.x2, y: point.y2 }, vertex2: { x: point.x2, y: current.y2 } },
{ vertex1: { x: point.x2, y: current.y2 }, vertex2: { x: current.x2, y: current.y2 } },
)
})
})
/** 연결되지 않은 포인트를 찾아서 해당 포인트를 가지고 있는 라인을 찾는다. */
let unFinishedPoints = []
let unFinishedLines = []
let intersectPoints = []
baseHipLines.forEach((line) => {
if (baseLinePoints.filter((point) => point.x === line.x1 && point.y === line.y1).length === 0) {
unFinishedPoints.push({ x: line.x1, y: line.y1 })
}
if (baseLinePoints.filter((point) => point.x === line.x2 && point.y === line.y2).length === 0) {
unFinishedPoints.push({ x: line.x2, y: line.y2 })
}
})
unFinishedPoints
.filter((point) => unFinishedPoints.filter((p) => p !== point && p.x === point.x && p.y === point.y).length === 0)
.forEach((point) => {
baseHipLines
.filter((line) => (line.x1 === point.x && line.y1 === point.y) || (line.x2 === point.x && line.y2 === point.y))
.forEach((line) => unFinishedLines.push(line))
})
unFinishedLines.forEach((line) => {
const xVector = Math.sign(Big(line.x2).minus(Big(line.x1)))
const yVector = Math.sign(Big(line.y2).minus(Big(line.y1)))
let lineIntersectPoints = []
checkEdgeLines.forEach((edge) => {
const intersectEdge = edgesIntersection(edge, {
vertex1: { x: line.x1, y: line.y1 },
vertex2: { x: line.x2, y: line.y2 },
})
if (intersectEdge) {
const isXVector = Math.sign(Big(intersectEdge.x).minus(Big(line.x1))) === xVector
const isYVector = Math.sign(Big(intersectEdge.y).minus(Big(line.y1))) === yVector
if (isXVector && isYVector) {
lineIntersectPoints.push({
intersection: intersectEdge,
size: Big(intersectEdge.x)
.minus(Big(line.x1))
.abs()
.pow(2)
.plus(Big(intersectEdge.y).minus(Big(line.y1)).abs().pow(2))
.sqrt()
.round(1)
.toNumber(),
})
}
}
})
lineIntersectPoints = lineIntersectPoints.filter(
(point, index, self) => index === self.findIndex((p) => p.intersection.x === point.intersection.x && p.intersection.y === point.intersection.y),
)
lineIntersectPoints.sort((a, b) => a.size - b.size)
if (lineIntersectPoints.length > 0) {
intersectPoints.push({ intersection: lineIntersectPoints[0].intersection, line })
}
})
/** 마루를 그릴수 있는지 찾는다. */
noRidgeHipPoints.forEach((hipPoint) => {
const ridgePoints = []
intersectPoints
.filter(
(intersectPoint) =>
(intersectPoint.intersection.x !== hipPoint.x2 && intersectPoint.intersection.y === hipPoint.y2) ||
(intersectPoint.intersection.x === hipPoint.x2 && intersectPoint.intersection.y !== hipPoint.y2),
)
.forEach((intersectPoint) => {
ridgePoints.push({
intersection: intersectPoint,
distance: Big(intersectPoint.intersection.x)
.minus(Big(hipPoint.x2))
.abs()
.pow(2)
.plus(Big(intersectPoint.intersection.y).minus(Big(hipPoint.y2)).abs().pow(2))
.sqrt()
.round(1)
.toNumber(),
})
})
ridgePoints.sort((a, b) => a.distance - b.distance)
if (ridgePoints.length > 0 && baseRidgeCount < getMaxRidge(baseLines.length)) {
const intersection = ridgePoints[0].intersection
const isPoint = intersection.intersection
const points = [hipPoint.x2, hipPoint.y2, isPoint.x, isPoint.y]
const ridgeLine = drawRidgeLine(points, canvas, roof, textMode)
baseRidgeCount = baseRidgeCount + 1
baseRidgeLines.push(ridgeLine)
let baseHipLine = baseHipLines.filter((line) => line === intersection.line)[0]
baseHipLine.x2 = isPoint.x
baseHipLines.y2 = isPoint.y
/** 보조선 라인 조정*/
const hipLine = intersection.line.line
/** 평면길이 */
const planeSize = calcLinePlaneSize({
x1: hipLine.x1,
y1: hipLine.y1,
x2: isPoint.x,
y2: isPoint.y,
})
/** 실제길이 */
const actualSize =
prevDegree === currentDegree
? calcLineActualSize(
{
x1: hipLine.x1,
y1: hipLine.y1,
x2: isPoint.x,
y2: isPoint.y,
},
currentDegree,
)
: 0
hipLine.set({
x2: isPoint.x,
y2: isPoint.y,
attributes: { roofId: roof.id, planeSize, actualSize },
})
hipLine.fire('modified')
intersectPoints = intersectPoints.filter((isp) => isp !== intersection)
noRidgeHipPoints = noRidgeHipPoints.filter((hip) => hip !== hipPoint)
} else {
const linePoints = []
intersectPoints.forEach((intersectPoint) => {
const intersection = intersectPoint.intersection
const xVector = Math.sign(Big(intersection.x).minus(Big(hipPoint.x2)))
const yVector = Math.sign(Big(intersection.y).minus(Big(hipPoint.y2)))
const checkEdge = {
vertex1: { x: intersection.x, y: intersection.y },
vertex2: {
x: Big(intersection.x).plus(Big(xVector).times(10)).toNumber(),
y: Big(intersection.y).plus(Big(yVector).times(10)).toNumber(),
},
}
const intersectX = edgesIntersection(
{
vertex1: { x: hipPoint.x2, y: hipPoint.y2 },
vertex2: { x: Big(hipPoint.x2).plus(Big(xVector).neg().times(10)).toNumber(), y: hipPoint.y2 },
},
checkEdge,
)
const intersectY = edgesIntersection(
{
vertex1: { x: hipPoint.x2, y: hipPoint.y2 },
vertex2: { x: hipPoint.x2, y: Big(hipPoint.y2).plus(Big(yVector).neg().times(10)).toNumber() },
},
checkEdge,
)
let distanceX = Infinity,
distanceY = Infinity
if (intersectX) {
distanceX = Big(intersectX.x)
.minus(Big(intersection.x))
.abs()
.pow(2)
.plus(Big(intersectX.y).minus(Big(intersection.y)).abs().pow(2))
.sqrt()
.round(1)
.toNumber()
}
if (intersectY) {
distanceY = Big(intersectY.x)
.minus(Big(intersection.x))
.abs()
.pow(2)
.plus(Big(intersectY.y).minus(Big(intersection.y)).abs().pow(2))
.sqrt()
.round(1)
.toNumber()
}
if (distanceX < distanceY) {
linePoints.push({ intersection: intersectX, intersectPoint })
}
if (distanceX > distanceY) {
linePoints.push({ intersection: intersectY, intersectPoint })
}
})
const linePoint = linePoints.reduce((prev, current) => {
const prevDistance = Big(prev.intersection.x)
.minus(Big(hipPoint.x2))
.abs()
.pow(2)
.plus(Big(prev.intersection.y).minus(Big(hipPoint.y2)).abs().pow(2))
.sqrt()
const currentDistance = Big(current.intersection.x)
.minus(Big(hipPoint.x2))
.abs()
.pow(2)
.plus(Big(current.intersection.y).minus(Big(hipPoint.y2)).abs().pow(2))
.sqrt()
if (prevDistance < currentDistance) {
return prev
} else {
return current
}
}, linePoints[0])
if (!linePoint) return
const hipStartPoint = [hipPoint.x2, hipPoint.y2, linePoint.intersection.x, linePoint.intersection.y]
/** 직선인 경우 마루를 그린다.*/
if (
((hipStartPoint[0] === hipStartPoint[2] && hipStartPoint[1] !== hipStartPoint[3]) ||
(hipStartPoint[0] !== hipStartPoint[2] && hipStartPoint[1] === hipStartPoint[3])) &&
baseRidgeCount < getMaxRidge(baseLines.length)
) {
const ridgeLine = drawRidgeLine(hipStartPoint, canvas, roof, textMode)
baseRidgeCount = baseRidgeCount + 1
baseRidgeLines.push(ridgeLine)
noRidgeHipPoints = noRidgeHipPoints.filter((hip) => hip !== hipPoint)
}
/** 대각선인경우 hip을 그린다. */
if (
Big(hipStartPoint[0])
.minus(Big(hipStartPoint[2]))
.abs()
.minus(Big(hipStartPoint[1]).minus(Big(hipStartPoint[3])).abs())
.abs()
.lt(1)
) {
// console.log('힙1')
const hipLine = drawHipLine(hipStartPoint, canvas, roof, textMode, null, prevDegree, currentDegree)
baseHipLines.push({
x1: hipStartPoint[0],
y1: hipStartPoint[1],
x2: hipStartPoint[2],
y2: hipStartPoint[3],
line: hipLine,
})
noRidgeHipPoints = noRidgeHipPoints.filter((hip) => hip !== hipPoint)
}
const isStartPoint = [
linePoint.intersection.x,
linePoint.intersection.y,
linePoint.intersectPoint.intersection.x,
linePoint.intersectPoint.intersection.y,
]
if (
((isStartPoint[0] === isStartPoint[2] && isStartPoint[1] !== isStartPoint[3]) ||
(isStartPoint[0] !== isStartPoint[2] && isStartPoint[1] === isStartPoint[3])) &&
baseRidgeCount < getMaxRidge(baseLines.length)
) {
const ridgeLine = drawRidgeLine(isStartPoint, canvas, roof, textMode)
baseRidgeCount = baseRidgeCount + 1
baseRidgeLines.push(ridgeLine)
}
if (
Big(isStartPoint[0])
.minus(Big(isStartPoint[2]))
.abs()
.minus(Big(isStartPoint[1]).minus(Big(isStartPoint[3])).abs())
.abs()
.lt(1)
) {
const hipLine = drawHipLine(isStartPoint, canvas, roof, textMode, null, prevDegree, currentDegree)
baseHipLines.push({
x1: isStartPoint[0],
y1: isStartPoint[1],
x2: isStartPoint[2],
y2: isStartPoint[3],
line: hipLine,
})
}
}
})
const ridgeAllPoints = []
baseRidgeLines.forEach((line) => ridgeAllPoints.push({ x: line.x1, y: line.y1 }, { x: line.x2, y: line.y2 }))
baseGableRidgeLines.forEach((line) => ridgeAllPoints.push({ x: line.x1, y: line.y1 }, { x: line.x2, y: line.y2 }))
/** hip 중에 지붕의 라인과 만나지 않은 선을 확인.*/
baseHipLines
.filter(
(hip) => baseLinePoints.filter((point) => (point.x === hip.x1 && point.y === hip.y1) || (point.x === hip.x2 && point.y === hip.y2)).length > 0,
)
.filter((hip) => {
const hipEdge = { vertex1: { x: hip.line.x1, y: hip.line.y1 }, vertex2: { x: hip.line.x2, y: hip.line.y2 } }
const hipVectorX = Math.sign(Big(hip.x1).minus(Big(hip.x2)))
const hipVectorY = Math.sign(Big(hip.y1).minus(Big(hip.y2)))
let isIntersect = false
roof.lines.forEach((line) => {
const edge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(edge, hipEdge)
if (intersection && !intersection.isIntersectionOutside) {
const isVectorX = Math.sign(Big(intersection.x).minus(Big(hip.x2)))
const isVectorY = Math.sign(Big(intersection.y).minus(Big(hip.y2)))
if (isVectorX === hipVectorX && isVectorY === hipVectorY) {
isIntersect = true
}
}
})
return !isIntersect
})
.forEach((hip) => {
const hipLine = hip.line
if (hipLine) {
const hipVectorX = Big(hipLine.x2).plus(Big(hipLine.attributes.planeSize).times(Big(hipLine.x1).minus(Big(hipLine.x2)).neg().s))
const hipVectorY = Big(hipLine.y2).plus(Big(hipLine.attributes.planeSize).times(Big(hipLine.y1).minus(Big(hipLine.y2)).neg().s))
const overlapLineX = roof.lines
.filter((roofLine) => roofLine.x1 !== roofLine.x2 && roofLine.y1 === hipLine.y2 && roofLine.y2 === hipLine.y2)
.filter((roofLine) => {
const minX = Math.min(roofLine.x1, roofLine.x2, hipLine.x2)
const maxX = Math.max(roofLine.x1, roofLine.x2, hipLine.x2)
const checkLineEdge = { vertex1: { x: minX, y: hipLine.y2 }, vertex2: { x: maxX, y: hipLine.y2 } }
let isIntersect = false
baseHipLines.forEach((baseHipLine) => {
const edge = {
vertex1: { x: baseHipLine.x1, y: baseHipLine.y1 },
vertex2: { x: baseHipLine.x2, y: baseHipLine.y2 },
}
const intersection = edgesIntersection(edge, checkLineEdge)
if (intersection && !intersection.isIntersectionOutside) {
const isVectorX = Math.sign(Big(intersection.x).minus(Big(baseHipLine.x2)))
const isVectorY = Math.sign(Big(intersection.y).minus(Big(baseHipLine.y2)))
if (isVectorX === hipVectorX && isVectorY === hipVectorY) {
isIntersect = true
}
}
})
baseRidgeLines.forEach((baseRidgeLine) => {
const edge = {
vertex1: { x: baseRidgeLine.x1, y: baseRidgeLine.y1 },
vertex2: { x: baseRidgeLine.x2, y: baseRidgeLine.y2 },
}
const intersection = edgesIntersection(edge, checkLineEdge)
if (intersection && !intersection.isIntersectionOutside) {
const isVectorX = Math.sign(Big(intersection.x).minus(Big(hipLine.x2)))
const isVectorY = Math.sign(Big(intersection.y).minus(Big(hipLine.y2)))
if (isVectorX === hipVectorX && isVectorY === hipVectorY) {
isIntersect = true
}
}
})
return !isIntersect
})
const overlapLineY = roof.lines
.filter((roofLine) => roofLine.y1 !== roofLine.y2 && roofLine.x1 === hipLine.x2 && roofLine.x2 === hipLine.x2)
.filter((roofLine) => {
const minY = Math.min(roofLine.y1, roofLine.y2, hipLine.y2)
const maxY = Math.max(roofLine.y1, roofLine.y2, hipLine.y2)
const checkLineEdge = { vertex1: { x: hipLine.x2, y: minY }, vertex2: { x: hipLine.x2, y: maxY } }
let isIntersect = false
baseHipLines.forEach((baseHipLine) => {
const edge = {
vertex1: { x: baseHipLine.x1, y: baseHipLine.y1 },
vertex2: { x: baseHipLine.x2, y: baseHipLine.y2 },
}
const intersection = edgesIntersection(edge, checkLineEdge)
if (intersection && !intersection.isIntersectionOutside) {
const isVectorX = Math.sign(Big(intersection.x).minus(Big(hipLine.x2)))
const isVectorY = Math.sign(Big(intersection.y).minus(Big(hipLine.y2)))
if (isVectorX === hipVectorX && isVectorY === hipVectorY) {
isIntersect = true
}
}
})
baseRidgeLines.forEach((baseRidgeLine) => {
const edge = {
vertex1: { x: baseRidgeLine.x1, y: baseRidgeLine.y1 },
vertex2: { x: baseRidgeLine.x2, y: baseRidgeLine.y2 },
}
const intersection = edgesIntersection(edge, checkLineEdge)
if (intersection && !intersection.isIntersectionOutside) {
const isVectorX = Math.sign(Big(intersection.x).minus(Big(hipLine.x2)))
const isVectorY = Math.sign(Big(intersection.y).minus(Big(hipLine.y2)))
if (isVectorX === hipVectorX && isVectorY === hipVectorY) {
isIntersect = true
}
}
})
return !isIntersect
})
overlapLineX.reduce((prev, current) => {
const prevDistance = Big(prev.x1)
.minus(Big(hipLine.x2))
.abs()
.lt(Big(prev.x2).minus(Big(hipLine.x2)).abs())
? Big(prev.x1).minus(Big(hipLine.x2)).abs()
: Big(prev.x2).minus(Big(hipLine.x2)).abs()
const currentDistance = Big(current.x1)
.minus(Big(hipLine.x2))
.abs()
.lt(Big(current.x2).minus(Big(hipLine.x2)).abs())
? Big(current.x1).minus(Big(hipLine.x2)).abs()
: Big(current.x2).minus(Big(hipLine.x2)).abs()
return prevDistance.lt(currentDistance) ? prev : current
}, overlapLineX[0])
overlapLineY.reduce((prev, current) => {
const prevDistance = Big(prev.y1)
.minus(Big(hipLine.y2))
.abs()
.lt(Big(prev.y2).minus(Big(hipLine.y2)).abs())
? Big(prev.y1).minus(Big(hipLine.y2)).abs()
: Big(prev.y2).minus(Big(hipLine.y2)).abs()
const currentDistance = Big(current.y1)
.minus(Big(hipLine.y2))
.abs()
.lt(Big(current.y2).minus(Big(hipLine.y2)).abs())
? Big(current.y1).minus(Big(hipLine.y2)).abs()
: Big(current.y2).minus(Big(hipLine.y2)).abs()
return prevDistance.lt(currentDistance) ? prev : current
}, overlapLineY[0])
if (overlapLineX.length > 0) {
const overlapLine = overlapLineX[0]
const maxX = Math.max(overlapLine.x1, overlapLine.x2)
const point = [hipLine.x2, hipLine.y2, maxX, hipLine.y2]
const addLine = drawHipLine(point, canvas, roof, textMode, null, prevDegree, currentDegree)
baseHipLines.push({ x1: point[0], y1: point[1], x2: point[2], y2: point[3], line: addLine })
}
if (overlapLineY.length > 0) {
const overlapLine = overlapLineY[0]
const maxY = Math.max(overlapLine.y1, overlapLine.y2)
const point = [hipLine.x2, hipLine.y2, hipLine.x2, maxY]
const addLine = drawHipLine(point, canvas, roof, textMode, null, prevDegree, currentDegree)
baseHipLines.push({ x1: point[0], y1: point[1], x2: point[2], y2: point[3], line: addLine })
}
}
const modifiedBaseLine = baseLines.filter((line) => (hip.x2 === line.x1 && hip.y2 === line.y1) || (hip.x2 === line.x2 && hip.y2 === line.y2))
if (modifiedBaseLine.length === 0) return
const verticalLine = modifiedBaseLine.find(
(line) =>
(hip.x2 === line.attributes.originPoint.x1 && hip.x2 === line.attributes.originPoint.x2) ||
(hip.y2 === line.attributes.originPoint.y1 && hip.y2 === line.attributes.originPoint.y2),
)
const horizonLine = modifiedBaseLine.find((line) => line !== verticalLine)
const horizonRoof = roof.lines.find((line) => {
const originPoint = horizonLine.attributes.originPoint
if (originPoint.y1 === originPoint.y2) {
return (
line.y1 === line.y2 &&
Math.sign(originPoint.x1 - originPoint.x2) === Math.sign(line.x1 - line.x2) &&
Big(originPoint.y1).minus(Big(line.y1)).abs().minus(horizonLine.attributes.offset).abs().lt(1)
)
} else {
return (
line.x1 === line.x2 &&
Math.sign(originPoint.y1 - originPoint.y2) === Math.sign(line.y1 - line.y2) &&
Big(originPoint.x1).minus(Big(line.x1)).abs().minus(horizonLine.attributes.offset).abs().lt(1)
)
}
})
if (horizonRoof) {
let horizonPoint
if (horizonRoof.y1 === horizonRoof.y2) {
const minX = Math.min(horizonRoof.x1, horizonRoof.x2, horizonLine.attributes.originPoint.x1, horizonLine.attributes.originPoint.x2)
const maxX = Math.max(horizonRoof.x1, horizonRoof.x2, horizonLine.attributes.originPoint.x1, horizonLine.attributes.originPoint.x2)
horizonPoint = [minX, horizonRoof.y1, maxX, horizonRoof.y1]
} else {
const minY = Math.min(horizonRoof.y1, horizonRoof.y2, horizonLine.attributes.originPoint.y1, horizonLine.attributes.originPoint.y2)
const maxY = Math.max(horizonRoof.y1, horizonRoof.y2, horizonLine.attributes.originPoint.y1, horizonLine.attributes.originPoint.y2)
horizonPoint = [horizonRoof.x1, minY, horizonRoof.x1, maxY]
}
let addLine
const alreadyHorizonLines = baseHipLines.find(
(hipLine) =>
hipLine.x1 === horizonPoint[0] && hipLine.y1 === horizonPoint[1] && hipLine.x2 === horizonPoint[2] && hipLine.y2 === horizonPoint[3],
)
if (!alreadyHorizonLines) {
addLine = drawHipLine(horizonPoint, canvas, roof, textMode, null, prevDegree, currentDegree)
baseHipLines.push({
x1: horizonPoint[0],
y1: horizonPoint[1],
x2: horizonPoint[2],
y2: horizonPoint[3],
line: addLine,
})
} else {
addLine = alreadyHorizonLines
}
let verticalPoint
if (addLine.y1 === addLine.y2) {
verticalPoint = [hip.x2, hip.y2, hip.x2, addLine.y1]
} else {
verticalPoint = [hip.x2, hip.y2, addLine.x1, hip.y2]
}
const alreadyVerticalLine = baseHipLines.find(
(hipLine) =>
hipLine.x1 === verticalPoint[0] && hipLine.y1 === verticalPoint[1] && hipLine.x2 === verticalPoint[2] && hipLine.y2 === verticalPoint[3],
)
if (!alreadyVerticalLine) {
addLine = drawHipLine(verticalPoint, canvas, roof, textMode, null, prevDegree, currentDegree)
baseHipLines.push({
x1: verticalPoint[0],
y1: verticalPoint[1],
x2: verticalPoint[2],
y2: verticalPoint[3],
line: addLine,
})
}
}
})
ridgeAllPoints.forEach((current) => {
ridgeAllPoints
.filter((point) => point !== current)
.forEach((point) => {
let checkRidgeLine, checkHipLine
/** 직선인 경우 마루 확인*/
if (
baseRidgeCount < getMaxRidge(baseLines.length) &&
((point.x === current.x && point.y !== current.y) || (point.x !== current.x && point.y === current.y))
) {
checkRidgeLine = { x1: current.x, y1: current.y, x2: point.x, y2: point.y }
}
/** 대각선인 경우 hip 확인*/
const hipX = Big(current.x).minus(Big(point.x)).abs()
const hipY = Big(current.y).minus(Big(point.y)).abs()
if (hipX.eq(hipY) && hipX.gt(0) && hipY.gt(0)) {
checkHipLine = { x1: current.x, y1: current.y, x2: point.x, y2: point.y }
}
if (checkRidgeLine) {
const ridgePoints = [checkRidgeLine.x1, checkRidgeLine.y1, checkRidgeLine.x2, checkRidgeLine.y2]
let baseIntersection = false
const ridgeInterSection = []
const ridgeEdge = {
vertex1: { x: ridgePoints[0], y: ridgePoints[1] },
vertex2: { x: ridgePoints[2], y: ridgePoints[3] },
}
baseLines.forEach((line) => {
const intersection = edgesIntersection(ridgeEdge, {
vertex1: { x: line.x1, y: line.y1 },
vertex2: { x: line.x2, y: line.y2 },
})
if (intersection && !intersection.isIntersectionOutside) {
ridgeInterSection.push(intersection)
}
})
baseRidgeLines.forEach((line) => {
const intersection = edgesIntersection(ridgeEdge, {
vertex1: { x: line.x1, y: line.y1 },
vertex2: { x: line.x2, y: line.y2 },
})
if (intersection && !intersection.isIntersectionOutside) {
ridgeInterSection.push(intersection)
}
})
baseHipLines.forEach((line) => {
const intersection = edgesIntersection(ridgeEdge, {
vertex1: { x: line.x1, y: line.y1 },
vertex2: { x: line.x2, y: line.y2 },
})
if (intersection && !intersection.isIntersectionOutside) {
ridgeInterSection.push(intersection)
}
})
const otherRidgeInterSection = ridgeInterSection.filter(
(intersection) =>
!(
(intersection.x === ridgePoints[0] && intersection.y === ridgePoints[1]) ||
(intersection.x === ridgePoints[2] && intersection.y === ridgePoints[3])
),
)
const alreadyRidges = baseRidgeLines.filter(
(line) =>
(line.x1 === ridgePoints[0] && line.y1 === ridgePoints[1] && line.x2 === ridgePoints[2] && line.y2 === ridgePoints[3]) ||
(line.x1 === ridgePoints[2] && line.y1 === ridgePoints[3] && line.x2 === ridgePoints[0] && line.y2 === ridgePoints[1]),
)
if (
!baseIntersection &&
alreadyRidges.length === 0 &&
otherRidgeInterSection.length === 0 &&
baseRidgeCount < getMaxRidge(baseLines.length)
) {
baseRidgeCount = baseRidgeCount + 1
const ridgeLine = drawRidgeLine(ridgePoints, canvas, roof, textMode)
baseRidgeLines.push(ridgeLine)
}
}
if (checkHipLine) {
const hipPoints = [checkHipLine.x1, checkHipLine.y1, checkHipLine.x2, checkHipLine.y2]
let baseIntersection = false
let hipInterSection = []
const hipEdge = {
vertex1: { x: hipPoints[0], y: hipPoints[1] },
vertex2: { x: hipPoints[2], y: hipPoints[3] },
}
baseLines.forEach((line) => {
const intersection = edgesIntersection(hipEdge, {
vertex1: { x: line.x1, y: line.y1 },
vertex2: { x: line.x2, y: line.y2 },
})
if (intersection && !intersection.isIntersectionOutside && eavesType.includes(line.attributes.type)) {
baseIntersection = true
}
})
baseRidgeLines.forEach((line) => {
const intersection = edgesIntersection(hipEdge, {
vertex1: { x: line.x1, y: line.y1 },
vertex2: { x: line.x2, y: line.y2 },
})
if (intersection && !intersection.isIntersectionOutside) {
hipInterSection.push(intersection)
}
})
baseHipLines.forEach((line) => {
const intersection = edgesIntersection(hipEdge, {
vertex1: { x: line.x1, y: line.y1 },
vertex2: { x: line.x2, y: line.y2 },
})
if (intersection && !intersection.isIntersectionOutside) {
hipInterSection.push(intersection)
}
})
const otherHipInterSection = hipInterSection.filter(
(intersection) =>
!(
(intersection.x === hipPoints[0] && intersection.y === hipPoints[1]) ||
(intersection.x === hipPoints[2] && intersection.y === hipPoints[3])
),
)
const alreadyHips = baseHipLines.filter(
(line) =>
(line.x1 === hipPoints[0] && line.y1 === hipPoints[1] && line.x2 === hipPoints[2] && line.y2 === hipPoints[3]) ||
(line.x1 === hipPoints[2] && line.y1 === hipPoints[3] && line.x2 === hipPoints[0] && line.y2 === hipPoints[1]),
)
if (!baseIntersection && alreadyHips.length === 0 && otherHipInterSection.length === 0) {
const hipLine = drawHipLine(hipPoints, canvas, roof, textMode, null, prevDegree, currentDegree)
baseHipLines.push({ x1: hipPoints[0], y1: hipPoints[1], x2: hipPoints[2], y2: hipPoints[3], line: hipLine })
}
}
})
})
const innerLines = [...baseRidgeLines, ...baseGableRidgeLines, ...baseGableLines, ...baseHipLines.map((line) => line.line)]
const uniqueInnerLines = []
innerLines.forEach((currentLine) => {
if (currentLine.length === 0) {
canvas.remove(currentLine)
} else {
const sameLines = uniqueInnerLines.filter(
(line) =>
line !== currentLine &&
((line.x1 === currentLine.x1 && line.y1 === currentLine.y1 && line.x2 === currentLine.x2 && line.y2 === currentLine.y2) ||
(line.x1 === currentLine.x2 && line.y1 === currentLine.y2 && line.x2 === currentLine.x1 && line.y2 === currentLine.y1)),
)
if (sameLines.length === 0) {
uniqueInnerLines.push(currentLine)
} else {
canvas.remove(currentLine)
}
}
})
canvas.renderAll()
roof.innerLines = uniqueInnerLines
roof.innerLines.forEach((line) => {
line.bringToFront()
})
/** 확인용 라인 제거 */
canvas
.getObjects()
.filter((obj) => obj.name === 'checkCircle' || obj.name === 'checkLine')
.forEach((obj) => canvas.remove(obj))
canvas.renderAll()
/*
drawCenterLine(roof, canvas, textMode)
*/
}
/**
* 추녀 마루를 그린다.
* @param points
* @param canvas
* @param roof
* @param textMode
* @param currentRoof
* @param prevDegree
* @param currentDegree
*/
const drawHipLine = (points, canvas, roof, textMode, currentRoof, prevDegree, currentDegree) => {
/** 대각선인 경우 경사를 조정해서 계산*/
const baseX = Big(points[0]).minus(Big(points[2])).abs()
const baseY = Big(points[1]).minus(Big(points[3])).abs()
if (baseX.gt(1) && baseY.gt(1)) {
const hypotenuse = calcLinePlaneSize({ x1: points[0], y1: points[1], x2: points[2], y2: points[3] })
const base = getAdjacent(hypotenuse)
const heightX = base * Math.tan((currentDegree * Math.PI) / 180)
const heightY = base * Math.tan((prevDegree * Math.PI) / 180)
const degreeX = Math.atan2(heightX, hypotenuse) * (180 / Math.PI)
const degreeY = Math.atan2(heightY, hypotenuse) * (180 / Math.PI)
if (Math.abs(degreeX - degreeY) < 1) {
currentDegree = degreeX
prevDegree = degreeY
}
}
const hip = new QLine(points, {
parentId: roof.id,
fontSize: roof.fontSize,
stroke: '#1083E3',
strokeWidth: 2,
name: LINE_TYPE.SUBLINE.HIP,
textMode: textMode,
attributes: {
roofId: roof.id,
// currentRoofId: currentRoof.id,
planeSize: calcLinePlaneSize({
x1: points[0],
y1: points[1],
x2: points[2],
y2: points[3],
}),
actualSize:
prevDegree === currentDegree
? calcLineActualSize(
{
x1: points[0],
y1: points[1],
x2: points[2],
y2: points[3],
},
currentDegree,
)
: 0,
},
})
canvas.add(hip)
hip.bringToFront()
canvas.renderAll()
return hip
}
/**
* 라인의 흐름 방향에서 마주치는 지붕선의 포인트를 찾는다.
* @param roof
* @param baseLine
* @param endPoint
* @returns {*}
*/
const findRoofIntersection = (roof, baseLine, endPoint) => {
let intersectPoints = []
const { x1, y1, x2, y2 } = baseLine
const baseEdge = {
vertex1: { x: x1, y: y1 },
vertex2: { x: x2, y: y2 },
}
/** 외벽선에서 라인 겹치는 경우에 대한 확인*/
roof.lines.forEach((line) => {
const lineEdge = { vertex1: { x: line.x1, y: line.y1 }, vertex2: { x: line.x2, y: line.y2 } }
const intersection = edgesIntersection(baseEdge, lineEdge)
if (
intersection &&
!intersection.isIntersectionOutside &&
Math.sign(endPoint.x - baseLine.x1) === Math.sign(endPoint.x - intersection.x) &&
Math.sign(endPoint.y - baseLine.y1) === Math.sign(endPoint.y - intersection.y)
) {
const intersectSize = endPoint.x
.minus(Big(intersection.x))
.pow(2)
.plus(endPoint.y.minus(Big(intersection.y)).pow(2))
.abs()
.sqrt()
.toNumber()
intersectPoints.push({
intersection,
size: intersectSize,
})
}
})
return intersectPoints.reduce((prev, current) => {
return prev.size < current.size ? prev : current
}, intersectPoints[0])
}
/**
* 마루를 그린다.
* @param points
* @param canvas
* @param roof
* @param textMode
* @returns {*}
*/
const drawRidgeLine = (points, canvas, roof, textMode) => {
const ridge = new QLine(points, {
parentId: roof.id,
fontSize: roof.fontSize,
stroke: '#1083E3',
strokeWidth: 2,
name: LINE_TYPE.SUBLINE.RIDGE,
textMode: textMode,
attributes: {
roofId: roof.id,
planeSize: calcLinePlaneSize({
x1: points[0],
y1: points[1],
x2: points[2],
y2: points[3],
}),
actualSize: calcLinePlaneSize({
x1: points[0],
y1: points[1],
x2: points[2],
y2: points[3],
}),
},
})
canvas.add(ridge)
ridge.bringToFront()
canvas.renderAll()
return ridge
}
/**
* 지붕선을 그린다.
* @param points
* @param canvas
* @param roof
* @param textMode
* @returns {*}
*/
const drawRoofLine = (points, canvas, roof, textMode) => {
const ridge = new QLine(points, {
parentId: roof.id,
fontSize: roof.fontSize,
stroke: '#1083E3',
strokeWidth: 2,
name: LINE_TYPE.SUBLINE.HIP,
textMode: textMode,
attributes: {
roofId: roof.id,
planeSize: calcLinePlaneSize({
x1: points[0],
y1: points[1],
x2: points[2],
y2: points[3],
}),
actualSize: calcLinePlaneSize({
x1: points[0],
y1: points[1],
x2: points[2],
y2: points[3],
}),
},
})
canvas.add(ridge)
ridge.bringToFront()
canvas.renderAll()
return ridge
}
/**
* 벡터를 정규화(Normalization)하는 함수
* @param v
* @returns {{x: *, y: *}|{x: number, y: number}}
*/
const normalizeVector = (v) => {
/** 벡터의 크기(길이)*/
const magnitude = Big(v.x).pow(2).plus(Big(v.y).pow(2)).sqrt()
if (magnitude.eq(0)) return { x: 0, y: 0 } // 크기가 0일 경우 (예외 처리)
return { x: Math.sign(Big(v.x).div(magnitude).toNumber()), y: Math.sign(Big(v.y).div(magnitude).toNumber()) }
}
/**
* 사잇각의 절반 방향 벡터 계산 함수
* @param line1
* @param line2
* @returns {{x: *, y: *}|{x: number, y: number}}
*/
const getHalfAngleVector = (line1, line2) => {
const v1 = { x: Big(line1.x2).minus(Big(line1.x1)).toNumber(), y: Big(line1.y1).minus(Big(line1.y2)).toNumber() }
const v2 = { x: Big(line2.x2).minus(Big(line2.x1)).toNumber(), y: Big(line2.y1).minus(Big(line2.y2)).toNumber() }
/**
* 벡터 정규화
* @type {{x: *, y: *}|{x: number, y: number}}
*/
const unitV1 = normalizeVector(v1) // 첫 번째 벡터를 정규화
const unitV2 = normalizeVector(v2) // 두 번째 벡터를 정규화
/**
* 두 벡터를 더합니다
* @type {{x: *, y: *}}
*/
const summedVector = {
x: Big(unitV1.x).plus(Big(unitV2.x)).toNumber(),
y: Big(unitV1.y).plus(Big(unitV2.y)).toNumber(),
}
/** 결과 벡터를 정규화하여 사잇각 벡터를 반환합니다 */
return normalizeVector(summedVector)
}
/**
* 두 선분이 겹치는지 확인
* @param line1
* @param line2
* @returns {boolean}
*/
export const segmentsOverlap = (line1, line2) => {
if (line1.y1 === line1.y2 && line2.y1 === line2.y2 && line1.y1 === line2.y1) {
if ((line1.x1 <= line2.x1 && line1.x2 >= line2.x1) || (line1.x1 <= line2.x2 && line1.x2 >= line2.x2)) {
return true
}
}
if (line1.x1 === line1.x2 && line2.x1 === line2.x2 && line1.x1 === line2.x1) {
if ((line1.y1 <= line2.y1 && line1.y2 >= line2.y1) || (line1.y1 <= line2.y2 && line1.y2 >= line2.y2)) {
return true
}
}
return false
}
/**
* 최대 생성 마루 갯수
* @param length
* @returns {number}
*/
const getMaxRidge = (length) => {
return (length - 4) / 2 + 1
}
/**
* 지붕 모양 을 변경한다.
* @param polygon
* @param canvas
*/
const reDrawPolygon = (polygon, canvas) => {
const lines = polygon.lines
let point = []
lines.forEach((line) => point.push({ x: line.x1, y: line.y1 }))
canvas?.remove(polygon)
const newPolygon = new QPolygon(point, {
id: polygon.id,
name: polygon.name,
fill: polygon.fill,
stroke: polygon.stroke,
strokeWidth: polygon.strokeWidth,
selectable: polygon.selectable,
fontSize: polygon.fontSize,
wall: polygon.wall !== undefined ? polygon.wall : null,
originX: polygon.originX,
originY: polygon.originY,
})
const newLines = newPolygon.lines
newLines.forEach((line) => {
lines.forEach((l) => {
if (line.x1 === l.x1 && line.y1 === l.y1) {
line.id = l.id
line.attributes = l.attributes
}
})
const lineLength = calcLinePlaneSize({ x1: line.x1, y1: line.y1, x2: line.x2, y2: line.y2 })
if (line.attributes !== undefined) {
line.attributes.planeSize = lineLength
line.attributes.actualSize = lineLength
} else {
line.attributes = {
roofId: newPolygon.id,
planeSize: lineLength,
actualSize: lineLength,
}
}
})
canvas.add(newPolygon)
canvas.renderAll()
return newPolygon
}
/**
* 지붕의 centerLine을 그린다.
* @param roof
* @param canvas
* @param textMode
*/
const drawCenterLine = (roof, canvas, textMode) => {
//현재 지붕의 centerLine을 다 지운다.
canvas
.getObjects()
.filter((object) => object.attributes?.roofId === roof.id)
.filter((line) => line.attributes?.type === 'pitchSizeLine')
.forEach((line) => canvas.remove(line))
const roofLines = roof.lines
roofLines.forEach((currentRoof) => {
const hips = roof.innerLines.filter(
(line) => (currentRoof.x1 === line.x1 && currentRoof.y1 === line.y1) || (currentRoof.x2 === line.x1 && currentRoof.y2 === line.y1),
)
const ridge = roof.innerLines
.filter((line) => line.name === LINE_TYPE.SUBLINE.RIDGE)
.filter((line) => {
if (currentRoof.x1 === currentRoof.x2) {
if (line.x1 === line.x2) {
return line
}
} else {
if (line.y1 === line.y2) {
return line
}
}
})
.reduce((prev, current) => {
let currentDistance, prevDistance
if (Math.sign(currentRoof.x1 - currentRoof.x2) === 0) {
currentDistance = Math.abs(currentRoof.y1 - current.y1)
prevDistance = prev ? Math.abs(currentRoof.y1 - prev.y1) : Infinity
} else {
currentDistance = Math.abs(currentRoof.y1 - current.y2)
prevDistance = prev ? Math.abs(currentRoof.y1 - current.y2) : Infinity
}
return prevDistance < currentDistance ? prev : current
}, null)
let points = []
if (hips.length === 2 && Math.abs(hips[0].x2 - hips[1].x2) < 1 && Math.abs(hips[0].y2 - hips[1].y2) < 1) {
const x1 = (currentRoof.x1 + currentRoof.x2) / 2
const y1 = (currentRoof.y1 + currentRoof.y2) / 2
points.push(x1, y1, hips[0].x2, hips[0].y2)
} else if (hips.length > 1) {
if (
((ridge?.x1 === hips[0].x2 && ridge?.y1 === hips[0].y2) || (ridge?.x2 === hips[0].x2 && ridge?.y2 === hips[0].y2)) &&
((ridge?.x1 === hips[1].x2 && ridge?.y1 === hips[1].y2) || (ridge?.x2 === hips[1].x2 && ridge?.y2 === hips[1].y2))
) {
//사각이면 마루와 현재 라인 사이에 길이를 구한다
if (Math.sign(currentRoof.x1 - currentRoof.x2) === 0) {
const yPoints = [currentRoof.y1, currentRoof.y2, ridge.y1, ridge.y2].sort((a, b) => a - b)
const x1 = (currentRoof.x1 + currentRoof.x2) / 2
const x2 = (ridge.x1 + ridge.x2) / 2
const y = (yPoints[1] + yPoints[2]) / 2
if (
((currentRoof.y1 <= y && y <= currentRoof.y2) || (currentRoof.y2 <= y && y <= currentRoof.y1)) &&
((ridge.y1 <= y && y <= ridge.y2) || (ridge.y2 <= y && y <= ridge.y1))
) {
points.push(x1, y, x2, y)
}
} else {
const xPoints = [currentRoof.x1, currentRoof.x2, ridge.x1, ridge.x2].sort((a, b) => a - b)
const y1 = (currentRoof.y1 + currentRoof.y2) / 2
const y2 = (ridge.y1 + ridge.y2) / 2
const x = (xPoints[1] + xPoints[2]) / 2
if (
((currentRoof.x1 <= x && x <= currentRoof.x2) || (currentRoof.x2 <= x && x <= currentRoof.x1)) &&
((ridge.x1 <= x && x <= ridge.x2) || (ridge.x2 <= x && x <= ridge.x1))
) {
points.push(x, y1, x, y2)
}
}
} else {
if (Math.sign(currentRoof.x1 - currentRoof.x2) === 0) {
let xPoints = []
xPoints.push(ridge?.x1, ridge?.x2)
hips.forEach((hip) => {
xPoints.push(hip.x2)
})
let maxPoint = xPoints.reduce((prev, current) => {
const currentDistance = Math.abs(currentRoof.x1 - current)
const prevDistance = prev ? Math.abs(currentRoof.x1 - prev) : 0
return prevDistance > currentDistance ? prev : current
}, null)
xPoints = xPoints.filter((point) => point === maxPoint)
let oppositeLine
if (xPoints.length === 1) {
if (ridge?.x1 === xPoints[0] || ridge?.x2 === xPoints[0]) {
oppositeLine = ridge
}
if (oppositeLine === undefined) {
oppositeLine = hips.find((hip) => hip.x2 === xPoints[0])
}
points.push(currentRoof.x1, oppositeLine.y2, oppositeLine.x2, oppositeLine.y2)
} else if (xPoints.length > 1) {
xPoints = [...new Set(xPoints)] // 중복제거
if (ridge?.length > 0) {
let boolX1 = xPoints.some((x) => x === ridge.x1)
let boolX2 = xPoints.some((x) => x === ridge.x2)
if (boolX1 && boolX2) {
oppositeLine = ridge
}
if (oppositeLine) {
const sortPoints = [currentRoof.y1, currentRoof.y2, oppositeLine.y1, oppositeLine.y2].sort((a, b) => a - b)
const y = (sortPoints[1] + sortPoints[2]) / 2
if (
((currentRoof.y1 <= y && y <= currentRoof.y2) || (currentRoof.y2 <= y && y <= currentRoof.y1)) &&
((oppositeLine.y1 <= y && y <= oppositeLine.y2) || (oppositeLine.y2 <= y && y <= oppositeLine.y1))
) {
points.push(currentRoof.x1, y, oppositeLine.x1, y)
}
}
}
}
} else {
let yPoints = []
yPoints.push(ridge?.y1, ridge?.y2)
hips.forEach((hip) => {
yPoints.push(hip.y2)
})
const maxPoint = yPoints.reduce((prev, current) => {
const currentDistance = Math.abs(currentRoof.y1 - current)
const prevDistance = prev ? Math.abs(currentRoof.y1 - prev) : 0
return prevDistance > currentDistance ? prev : current
})
yPoints = yPoints.filter((y) => y === maxPoint)
let oppositeLine
if (yPoints.length === 1) {
if (ridge?.y1 === yPoints[0] || ridge?.y2 === yPoints[0]) {
oppositeLine = ridge
}
if (oppositeLine === undefined) {
oppositeLine = hips.find((hip) => hip.y2 === yPoints[0])
}
points.push(oppositeLine.x2, currentRoof.y1, oppositeLine.x2, oppositeLine.y2)
} else if (yPoints.length > 1) {
let boolY1 = yPoints.some((y) => y === ridge?.y1)
let boolY2 = yPoints.some((y) => y === ridge?.y2)
if (boolY1 && boolY2) {
oppositeLine = ridge
}
if (oppositeLine) {
const sortPoints = [currentRoof.x1, currentRoof.x2, oppositeLine.x1, oppositeLine.x2].sort((a, b) => a - b)
const x = (sortPoints[1] + sortPoints[2]) / 2
if (
((currentRoof.x1 <= x && x <= currentRoof.x2) || (currentRoof.x2 <= x && x <= currentRoof.x1)) &&
((oppositeLine.x1 <= x && x <= oppositeLine.x2) || (oppositeLine.x2 <= x && x <= oppositeLine.x1))
) {
points.push(x, currentRoof.y1, x, oppositeLine.y1)
}
}
}
}
}
} else {
if (currentRoof.attributes.type === LINE_TYPE.WALLLINE.JERKINHEAD) {
const gables = canvas
.getObjects()
.filter((object) => object.attributes?.currentRoofId === currentRoof.id && object.name === LINE_TYPE.SUBLINE.GABLE)
let x1, y1, x2, y2
x1 = (currentRoof.x1 + currentRoof.x2) / 2
y1 = (currentRoof.y1 + currentRoof.y2) / 2
if (currentRoof.x1 === currentRoof.x2) {
const xPoints = []
gables.forEach((gable) => {
if (gable.x1 !== x1) {
xPoints.push(gable.x1)
} else if (gable.x2 !== x1) {
xPoints.push(gable.x2)
}
})
x2 = xPoints.reduce((sum, current) => sum + current, 0) / xPoints.length
y2 = y1
} else {
const yPoints = []
gables.forEach((gable) => {
if (gable.y1 !== y1) {
yPoints.push(gable.y1)
} else if (gable.y2 !== y1) {
yPoints.push(gable.y2)
}
})
x2 = x1
y2 = yPoints.reduce((sum, current) => sum + current, 0) / yPoints.length
}
points.push(x1, y1, x2, y2)
}
}
if (points?.length > 0) {
const currentDegree = getDegreeByChon(currentRoof.attributes.pitch)
const length =
currentDegree !== undefined && currentDegree > 0
? calcLineActualSize({ x1: points[0], y1: points[1], x2: points[2], y2: points[3] }, currentDegree)
: calcLinePlaneSize({ x1: points[0], y1: points[1], x2: points[2], y2: points[3] })
const pitchSizeLine = new QLine(points, {
parentId: roof.id,
stroke: '#000000',
strokeWidth: 2,
strokeDashArray: [5, 5],
selectable: false,
fontSize: roof.fontSize,
textMode: textMode,
attributes: {
roofId: roof.id,
type: 'pitchSizeLine',
planeSize: length,
actualSize: length,
},
})
if (length > 0) {
canvas.add(pitchSizeLine)
canvas.renderAll()
}
}
})
}
function arePointsEqual(point1, point2) {
return Math.abs(point1.x - point2.x) <= 1 && Math.abs(point1.y - point2.y) <= 1
}
export const toGeoJSON = (pointsArray) => {
// 객체 배열을 GeoJSON 형식의 좌표 배열로 변환
const coordinates = pointsArray.map((point) => [point.x, point.y])
// 닫힌 다각형을 만들기 위해 첫 번째 점을 마지막에 추가
coordinates.push([pointsArray[0].x, pointsArray[0].y])
return coordinates
}
export const inPolygon = (polygonPoints, rectPoints) => {
const polygonCoordinates = toGeoJSON(polygonPoints)
const rectCoordinates = toGeoJSON(rectPoints)
const polygonFeature = turf.polygon([polygonCoordinates])
const rectFeature = turf.polygon([rectCoordinates])
// 사각형의 모든 꼭짓점이 다각형 내부에 있는지 확인
const allPointsInsidePolygon = rectCoordinates.every((coordinate) => {
const point = turf.point(coordinate)
return turf.booleanPointInPolygon(point, polygonFeature)
})
// 다각형의 모든 점이 사각형 내부에 있지 않은지 확인
const noPolygonPointsInsideRect = polygonCoordinates.every((coordinate) => {
const point = turf.point(coordinate)
return !turf.booleanPointInPolygon(point, rectFeature)
})
return allPointsInsidePolygon && noPolygonPointsInsideRect
}
/**
* 포인트를 기준으로 선의 길이를 구한다. 선의 길이는 10을 곱하여 사용한다.
* @param points
* @returns number
*/
export const calcLinePlaneSize = (points) => {
const { x1, y1, x2, y2 } = points
return Big(x1).minus(x2).abs().pow(2).plus(Big(y1).minus(y2).abs().pow(2)).sqrt().times(10).round().toNumber()
}
/**
* 포인트와 기울기를 기준으로 선의 길이를 구한다.
* @param points
* @param degree
* @returns number
*/
export const calcLineActualSize = (points, degree = 0) => {
const planeSize = calcLinePlaneSize(points)
const theta = Big(Math.cos(Big(degree).times(Math.PI).div(180)))
return Big(planeSize).div(theta).round().toNumber()
}
export const createLinesFromPolygon = (points) => {
const lines = []
for (let i = 0; i < points.length; i++) {
const nextIndex = (i + 1) % points.length
const line = new fabric.Line([points[i].x, points[i].y, points[nextIndex].x, points[nextIndex].y], {
stroke: 'red',
strokeWidth: 2,
selectable: false,
evented: false,
})
lines.push(line)
}
return lines
}
/** 포인트 정렬 가장왼쪽, 가장위 부터 */
const getSortedPoint = (points, lines) => {
const startPoint = points
.filter((point) => point.x === Math.min(...points.map((point) => point.x)))
.reduce((prev, curr) => {
return prev.y < curr.y ? prev : curr
})
const sortedPoints = []
sortedPoints.push(startPoint)
let prevPoint = startPoint
let prevDirection
for (let i = 0; i < points.length - 1; i++) {
const samePoint = []
if (i === 0) {
points.forEach((point) => {
if (point.x === prevPoint.x && point.y > prevPoint.y) {
samePoint.push({ point, direction: 'bottom', size: Math.abs(prevPoint.y - point.y) })
}
})
if (samePoint.length > 0) {
samePoint.sort((a, b) => a.size - b.size)
sortedPoints.push(samePoint[0].point)
prevDirection = samePoint[0].direction
prevPoint = samePoint[0].point
} else {
points.forEach((point) => {
if (point.y === prevPoint.y && point.x > prevPoint.x) {
samePoint.push({ point, direction: 'right', size: Math.abs(prevPoint.x - point.x) })
}
})
if (samePoint.length > 0) {
samePoint.sort((a, b) => a.size - b.size)
sortedPoints.push(samePoint[0].point)
prevDirection = samePoint[0].direction
prevPoint = samePoint[0].point
}
}
} else {
points
.filter((point) => !sortedPoints.includes(point))
.forEach((point) => {
if ((prevDirection === 'top' || prevDirection === 'bottom') && point.y === prevPoint.y) {
const direction = point.x > prevPoint.x ? 'right' : 'left'
const size = Math.abs(point.x - prevPoint.x)
samePoint.push({ point, direction, size })
}
if ((prevDirection === 'left' || prevDirection === 'right') && point.x === prevPoint.x) {
const direction = point.y > prevPoint.y ? 'bottom' : 'top'
const size = Math.abs(point.y - prevPoint.y)
samePoint.push({ point, direction, size })
}
if (Math.round(Math.abs(point.x - prevPoint.x)) === Math.round(Math.abs(point.y - prevPoint.y))) {
const isLinePoint =
lines.filter(
(line) =>
(line.x1 === prevPoint.x && line.y1 === prevPoint.y && line.x2 === point.x && line.y2 === point.y) ||
(line.x2 === prevPoint.x && line.y2 === prevPoint.y && line.x1 === point.x && line.y1 === point.y),
).length > 0
if (isLinePoint) {
const direction = prevDirection
const size = Big(point.x).minus(prevPoint.x).abs().pow(2).plus(Big(point.y).minus(prevPoint.y).abs().pow(2)).sqrt().round().toNumber()
samePoint.push({ point, direction, size })
}
}
})
if (samePoint.length > 0) {
samePoint.sort((a, b) => a.size - b.size)
sortedPoints.push(samePoint[0].point)
prevDirection = samePoint[0].direction
prevPoint = samePoint[0].point
}
}
}
return sortedPoints
}
const reCalculateSize = (line) => {
const oldPlaneSize = line.attributes.planeSize
const oldActualSize = line.attributes.actualSize
const theta = Big(Math.acos(Big(oldPlaneSize).div(oldActualSize)))
.times(180)
.div(Math.PI)
const planeSize = calcLinePlaneSize({
x1: line.x1,
y1: line.y1,
x2: line.x2,
y2: line.y2,
})
const actualSize =
planeSize === oldActualSize
? 0
: calcLineActualSize(
{
x1: line.x1,
y1: line.y1,
x2: line.x2,
y2: line.y2,
},
theta,
)
return { planeSize, actualSize }
}